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LIST OF SYMBOLS 

a mode attenuation, decibels per kilometer 
^ (dB/km) 

Ai Airy integral function 

B 2k2K,per meters 

B' B^\, per meter 

c* eguivalent complex dielectric constant 
of rough surface 

C cosine of complex angle of incidence at 
ground 

E electric field intensity, volts per meter 

P rough-surface reflection factor 
rs 

h surface roughness characteristic height 
(rms) ,meter 

H duct height, meters 

H magnetic intensity, amperes per meter 

] stratum or layer number 

k wave number, per meter 

K lapse rate of refractive index, per metec 

K, lapse rate of refractive index inside 
duct, per meter 

K. gradient of refractive index for standard 
^ atmosphere, per meter 

m mode order 

M refractive modulus 

n refractive index 

N refractivity = (n - 1) x 10* 
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fi Fresnel reflection coefficient of plane surface 

H* Fresnel reflection coefficient of equiva
lent surface 

u complex variable 

u* uexp (-j2ir/3) 

W duct depth, meters 

X a/WE = 6 0cjX 

z vertical distance from ground level, meters 

Zg effective ground surface impedance, ohms 

e permittivity, farads per meter 

p permeability, henrys per meter 

cr conductivity, mhos per meter 

characteristic impedance of ground, ohms 

0 angle of incidence, radians 

$ grazing angle, radians 

X wavelength, meters 

0) frequency, radians per second 



www.manaraa.com

1 

INTRODUCTION 

When the atmospheric conditions are such that the 

refractive index of the air decreases with height, as is fre

quently the case in shallow but horizontally extended regions 

of the troposphere, decimetric and shorter radio waves can 

undergo pronounced refraction and thus be trapped within 

these layers and guided along the surface of the earth. This 

results in intense fields near the surface of the earth, far 

exceeding those obtained under "normal" conditions. This 

propagation mechanism, referred to variously as waveguide-

mode or duct propagation or trapping, depends upon rather 

minute changes in refractive index; refractive index con

trasts as small as 5 N units ( N = (n - 1)x10G, where n is 

the radio refractive index of the atmosphere) are capable of 

supporting modes in the upper VHF band. Frequencies extend

ing up to 1000 gigahertz are influenced by refractive gradi

ents in the atmosphere. This difference can be attributed to 

the ability of the polar molecules of water to respond to the 

electrical stimulus supplied by a passing radio wave. 

The waveguide mode of propagation was first recognized 

more than fifty years ago as the mechanism for long-distance 

trans-oceanic radio communication, having been suggested by 

Watson (1,2) in 1919. Watson proposed that high-frequency 

waves propagate between the earth and the ionosphere in a 
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manner analogous to that in parallel-plate waveguidas, with 

waves being reflected successively from the earth and 

ionosphere. Numerous observations of "anomalous" propagation 

effects were reported in the late thirties and early forties 

and included such phenomena as greatly extended propagation 

distances, severely reduced ranges, as well as improved 

television reception at twilight and early evening hours. A 

considerable amount of theoretical and experimental effort 

was devoted to atmospheric refraction during World War II in 

view of the military applications and significance of the 

phenomenon. The book edited by D. E. Kerr(3) and the report 

of the British Physical Society in 1948, "Meteorological 

Factors in Radio Have Propagation" (4) , represent a summary af 

the wartime effort on the part of the Americans and British, 

respectively. I. L. Eckersley (5), with Millington (6) , con

tributed a great deal to the development of the theory of 

tropospheric refraction. The full impact of the work of 

these two researchers was not entirely appreciated during 

their time, however, due in part to the allegedly difficult 

style in which they wrote. Budden(7} further developed the 

ideas of tropospheric refraction in a monograph published in 

1960; his book is a particularly fine introduction to the 

subject of mode propagation. In many ways, the subject of 

atmospheric refraction has been well-studied. It is signifi

cant, however, that until now, investigators have only 
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glossed over the effects of surface roughness and the finite 

conductivity of natural surfaces in the short-wavelength por

tion of the radio spectrum. For this reason, this work will 

attempt to extend the theory and methods of radiowave 

propagation in the atmosphere in order to assass the effects 

of the above-mentioned parameters in the propagation mecha

nism. 

Before going into the solution of the mode problem 

itself, a brief introduction to the meteorological elements 

of the problem and the basic theory of waveguide-mode 

propagation will be made. 

The refractivity of a well-mixed parcel of air, having 

temperature T and pressure p has been empirically described 

in the following eguation: 

N = (n - 1)i106 = |(p + Be/T) (1.1) 

where e = partial pressure of water vapor, mb 
A = 790K/mb 
B = 4800OK 
n = n(z), the refractive index of air 

In wave propagation studies, the form given above is commonly 

used; in meteorology, the usual unit is the refractive 

modulus M, 

M = [n (1 + z/a) - 1 ]x10* 
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M = N • (z/a)KlO* (1.2) 

where N = (n - 1)x10® 
n = a(z), the refractive index of air at height z 
a = radius of t!ie earth 

The term z/a is a correction factor for the actual refractive 

index of the atmosphere and is used in an earth-flattening 

procedure whereby the relative curvature between the earth 

and a radio ray is maintained when the earth is "flattened" 

(a^oo) and the air replaced by a fictitious medium with the 

refractive index (n * z/a)• A detailed derivation of this 

procedure may be found in ?ekeris(8). 

Examination of equation (1.1) will show that the refractive 

index may decrease with height according to the following 

changes in the parameters T and e: 

(a) decrease in water-vapor pressure 

(b) increase in air temperature 

These meteorological events occur when there is advection. 

subsidence, radiation, or a combination of these processes 

(9, pp. 132-134}. The occurrence of radio ducts under these 

conditions is fairly regular in a temporal sense and has been 

observed in tropical, subtropical, and temperate regions of 
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Due to the constant mixing taking place in the atmos

phere, there are two observable patterns in the vertical 

profile of refractive index. First, there is the fine-scale 

fluctuation pattern due to relatively high gradients occur

ring over distances which are short compared with a wave

length. The other pattern is the gross, or large-scale, var

iation to which the incidence of radio refraction is attri

buted by current theory. These variations in the refractive 

index as a function of height are depicted below in a replica 

of a profile taken with airplane-borne instrumentation 

(Figure 1.1). 

ISOO 

lOOO 

£ 

Î 

« 
I 

Figure 1. 1. Beplica of an actual refractive 
profile taken by instrumentation in an airplane. 
Castel (10)). 

index 
(trom fiu 
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Conventionally, radio ducts may be classified according 

to their location with respect to the surface of the earth, 

as shown in figure 1.2. In these schematic representations 

of the average refractive index profile, the corresponding 

graphs of the temperature and humidity are included, k great 

variety of these types of graphs are to be found in refer

ences 3,9; and 11. 

In this paper we will consider surface ducts alone, 

since these might be expected to be affected by surface con

ditions, so that all types of SS and ES ducts should be in

cluded for completeness. Of the latter kind, those cases in 

which the duct depth W is low enough so that the downgoing 

component wave of a mode actually reaches the ground are im

portant but these will not be considered here. Wait and 

Spies(12) and Chang(13} have published some analyses of 

elevated tropospheric ducts. Their use of the linear-

segmented profile technique is an important feature of the 

work to be described herein. 

In metallic waveguides, waves travelling along the 

guide a&^s can be represented by crossing pairs of component 

waves. The discrete number of these pairs ("modes'*) depends 

upon the spacing between the guide walls and the wavelength 

of the field. At either wall, each component wave will have 

its wave normal making an angle fS with respect to the 
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SS duct ES duct EE duct 

surface layer 
surface duct 

elevated layer 
surface duct 

elevated, layer 
elevated duct 

•4'emperature-

Fotentlal Temperature 

Specific humldlty-

Modlfled refractive Index-

Figure 1.2. Types of radio ducts. 
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waveguide axis. It is possible, however, for a single 

conductive plate to act as a waveguide provided that it can 

constrain a wave launched over it to remain in contact with 

the surface. In surface microwave guides, a dielectric 

coating or corrugated structure facilitates the desired 

guiding function; in the troposphere, any guiding action 

depends upon the occurrence of a negative gradient of 

refractive index and one which is pronounced enough so that 

an upward-going wave will eventually be refracted downward. 

In elevated ducts, it is not necessary that a conductive wall 

be present. 

There are two possible approaches to the analysis of 

modes in tropospheric waveguides. In the first and most fre

quently employed technique in the past, the phase integral 

approach (7, pp. 116-118), each component wave of the modes 

is made to satisfy the condition that upon complete traversal 

of the space between the guide walls or between the lower 

boundary of the guide and some to-be-determinad height in the 

medium the total change in phase is some multiple of 2it 

radians. This method is extended to the case of a lossy 

medium by allowing complex values of phase, with the result 

that numerical solutions require the use of contour integra

tion. The extension of the method was a contribution of 

Eckersley and Millington, op. cit. The method is also capa

ble of dealing with the problem of diffraction around the 
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earth and the interested reader is referred to Sudden for ad

ditional information. 

The phase integral approach just sketched is essentially 

an application of ray theory to radio propagation and 

inherently is thus unable to account for the relatively 

strong fields outside ducts; furthermore, contour integra

tion is not readily done numerically when the refractive 

index profile is not representable in terms of some simple 

functions. The full-wave solution appears to have the capa

bility of surmounting the limitations of the previous method 

in the general case where the profile is best described by 

straight-line segments and the lower boundary is not plane. 

The full-wave solution arises from the use of the differen

tial eguation to describe the field inside the radio duct. 

To-date, it has been used by Wait and Spies (12) and Chang (13) 

in idealized mode problems. 
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SURFACE BOOGHNESS EFFECTS 

Some of the motivation for studying the effects of 

surface roughness on tropaspheric waveguides is due to the 

work which this writer did for his master's thesis on the 

subject of depolarization of electromagnetic waves by rough 

conducting surfaces. Terrestrial line-of-sight microwave 

communication links and other radio systems which operate 

near the earth's surface are susceptible to the effects of 

surface roughness. A search of the available literature 

revealed that previous investigators always assumed that the 

earth could be considered a smooth perfect conductor, even at 

wavelengths in which the roughness structure of the ground or 

sea was large in comparison with a wavelength. The assump

tion will often be acceptable at long wavelengths since the 

complex dielectric constant - ja/coe wiH then have a large 

imaginary part. In this chapter, we will propose a method 

for including surface properties in the formulation of the 

waveguide-mode problem in surface-based tropospheric ducts. 

The assumption of a perfectly conductive earth is equiv

alent to one of the following conditions, depending upon the 

polarization of the incident wave; 

R = -1 or R = 1 
V h 

( 2 . 1 )  
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where H is the Fresnei reflection coefficient and the sub

scripts "v" and "h" stand for vertical and horizontal polar

ization, respectively. In the "full-wave" solution, to be 

discussed in the next chapter, equation (2.1) is equivalent 

to forcing one of the following conditions at z = 0: 

f(z) =0 (horizontal polarization) 

df/dz = 0 (vertical polarization) 

where f(z) refers to the electric field for horizontal polar

ization and to the magnetic field for vertical polarization. 

Approximating the reflection coefficient by +1 or -1 holds 

for a wide range of grazing angles and materials, as can be 

seen in Figures 2-1 and 2.2. This is especially true at low 

frequencies, corresponding to long wavelengths. This is in

dicated by the large values of X = 60aA = o"/aje^ on the two 

figures. It is the dependence of the Fresnei reflection co

efficient upon the electrical constants of surfaces which 

will be exploited in the approach to be presented shortly. 

First, we will look at some of the simplifying assumptions 

employed in the method. 

In a representative waveguide in the troposphere, the 

elevation angles of the wave normals are less than a degree; 

for soil and water, the magnitudes of the reflection coeffi

cients are nearly equal to unity for near-grazing angles of 
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1.0 

.8 

"jï 
as .6 

.4 

-200" 

"^jS 
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< -180" 
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4 
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12 MH* 
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Figure 2-1. Magnitude and phase of Fresnel reflection 
coefficient for moist soil. Horizontal polarization. 
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0 
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. 8  
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Moist soil 
2 ft 

71000 
0 

100 (X = 1) 

-60 
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aa 

o* 
w , 

-120 

-180 
60 40 80 20 0 

Degrees above horizon 

figure 2.2. Magnitude and phase of Fresnel 

reflection coefficient for moist soil. Vert

ical polarization. 
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incidence. Such is not the case with ipnospharic waveguides 

where the mode angles can be several degrees above the 

horizontal. Accordingly, the principal dstarminiog factor of 

the ability of the ground to reflect an incident wave is its 

roughness profile: the rougher the profile, the less energy 

is reflected in the specular direction. 

For an estimate of the value of the angle of incidence 

which is to be used in calculating the equivalent surface 

constants, we will look at the ideal case when the lower 

boundary of the guide has perfect conductivity. For a given 

refractive index profile, we can solve for the directions of 

the wave normals for each mode. It is enough to consider 

only the first mode in a given case since this gives the 

lowest value of the angle of incidence 8. The angle 0 is the 

angle between the wave normal and the vertical direction and 

is, in general, a complex quantity. In the case of 

tropospheric waveguides in which the lower boundary is not 

perfectly conductive, the mode angle will move away from the 

horizontal direction. Me will not show this behavior here; 

the interested reader is referred to Budden (7, p. 143) in 

which plots of mode points on the complex 9-plane for the 

case of ionospheric modes are given for different ratios of 

conductivity to permittivity. The angles for the first few 

modes of a typical tropospheric waveguide are given in Table 

2.1. The values are obtained from the expression 
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sin^e = 1.5 K^(m - 3/4), m = 1, 2, ... (2.2) 

where is the lapse rate (m-*) and m is the mode order. 

This is the approximate mode equation for a guide with 

perfectly conducting walls. 

Prom the numbers given in Table 2.1 or when equation 

(2.2) is solved, it can be seen that the lowest-order node 

(m = 1) has the angle of 3.35 milliradians above the 

horizontal for the TH case, given a lapse rate of 10-' per 

meter and a wavelength of 1 meter. Since the angle increases 

with lapse rate, this value represents a lower limit. 

Table 2.1. Elevation angles of the first three modes 
in a duct over a perfect conductor. Refractive index 
profile is linear. 

Elevation angle 
(millirad) 

Mode order 

1 

2 

3 

3.35 

5.72 

6.96 
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Equivalent surface. The practical value of waveguide 

mode propagation theory can be enhanced considerably if it 

can be employed in those instances in which the lowsr bounda

ry between the atmosphere and the earth is rough. One ap

proach which might be used is that described by Senior (14). 

His method, uses an imperfectly conducting plane surface to 

replace a rough contour, the conductivity of the eguivalent 

surface being a function of the roughness and the electromag

netic properties of the original surface. The egui/alence is 

established by forcing the boundary conditions for the two 

surfaces to be identical. Having defined the electrical pa

rameters of the eguivalent surface, it is then possible to 

set up the waveguide-mode problem for the case in which the 

lower boundary of a duct is is a plane, imperfect conductor. 

The presence of an imperfect conductor necessitates the use 

of an impedance boundary condition (11,15). This condition 

expresses a relationship between the tangential components of 

the electric and magnetic fields at an interface between a 

dielectric medium and an imperfect conductor. 

We will not, however, use Senior's method for this 

present work; instead, we will introduce a less sophisticated 

characterization of the effects of a rough contour. The 

method to be used does not depend upon restrictive conditions 

with respect to the rough surface being considered; on the 

contrary, irrespective of the degree of roughness, if P is 
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specified, then an equivalent surface can always be found. 

As presented below, the technique merely accounts for one 

aspect of rough-surface scattering, namely that of the reduc

tion in the intensity of the field in the specular direction 

relative to the mean plane of the rough surface. There are 

other processes which are generally involved in rough-surface 

scattering, including shadowing, depolarization, and multiple 

scattering. All of these would exert some degree of influ

ence upon the reflected field. Accordingly, it should be 

emphasized that the use of the reflection factor is ap

propriate only for the component of the scattered field which 

has the same polarization as the incident field which pro

duced it. 

Consider the simplified approximation of a rough contour 

by means of an array of flat facets tangent to the original 

rough surface. Figure 2.4 shows how a rough contour might be 

approximated by short straight-line segments which are local

ly tangent to the rough contour. For the two-dimensional 

case, these lines would be replaced v th rectangular facets 

or some other appropriate two-dimensional shapes. The linear 

dimensions and angular orientations of these elementary 

reflectors would generally be randomly distributed. In this 

representation of the rough contour, we note that there has 

to be a trade-off between the accuracy of the approximation 

of the contour with the flat facets and the specular charac-
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Figure 2.4. Approximation of an irregular contour 
using straight-line segments. x scale is compressed 

4 Appro XI o 
using straight-line segments 

z 

n — local normal 

Figure 2.5. Local scattering geometry and sketch 
of scattering pattern from plane strip. 
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ter of the fields scattered from the elementary scatterers. 

With this property, reflection from each facet will be essen

tially specular; wave reflection theory for rectangular 

plates with finite area(20) will show that the scattered 

field will have a pattern described by the product of 

(sinx)/x (2.3) 

where x = irasinS/X 
a = length of a side of the rectangle 
e = angle of incidence 
X = wavelength 

Figure 2.5 shows how a single facet might reflect an 

incident wave. Also shown is the assumed sinx/x pattern of 

the reflected field. This shape becomes sharper as the angle 

of incidence increases to glancing and the linear dimensions 

are increased. Thus to a first order approximation, the far 

field will be due to specular contributions from each area, 

with those facets lying near the horizontal providing the 

major contribution. The implication of the preceding argu

ment is that the rougii contour scatters with a reduced area, 

resulting in a far field which will be attenuated. 

Calculation_of_€auivalent_surface_constan&s^ Let the 

far field in the rough-surface case be E' due to an incident 

field Corresponding to these guantities we define an ef-

fêCLlva rsflsctica coefficient 5*? 
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R* = E'/E^ (2.4) 

Next we introduce the rough-surface reflection factor F^g, 

which is defined as 

F = R'/R (2.5) 
rs 

where R is the Fresnel reflection coefficient of a smooth 

surface, R' that for the rough contour. 

The reflection factor F is a tensor function of the 
rs 

roughness and electrical parameters of the surface, the angle 

of incidence, and the wavelength. From this point, however, 

we will not be concerned with obtaining a mathematical ex

pression for F^^ since this is another whole area of investi

gation by itself; Senior's two articles (14,15) could be 

useful starting points for such a study. Although F^^ is a 

tensor, we will employ the simplification that the scattered 

field is primarily due to the contributions of areas of the 

surface which have their planes oriented close to the 

horizontal so that it is reasonable to take F^g to be a 

scalar quantity. In the limit, as the rms roughness height 

goes to zero and/or as the correlation length increases, cor-

iéâpûûaing to a ssccth surface, sill tend ynity 

since then the whole surface will be contributing to the fac 



www.manaraa.com

21 

field. In what follows, will be some number less than or 

equal to unity, depending upon whether the rough surface is 

more or less effective in reducing the scattered field. The 

Fresnel reflection coefficient of a plane surface illuminated 

by a wave incident at the grazing angle 0, and having the 

constants e^and a is 

where X = ôOCA, 

Now a rough contour, made up of the same material, will 

by our postulate, have an effective reflection coefficient 

where a and b are real and |B'| < 1, and which could be re

lated to the plane surface reflection coefficient R via the 

reflection factor as given in equation (2.6). Osing the 

expression for the Fresnel reflection coefficient, we can 

derive an inversion equation for finding the constants of the 

equivalent surface. For the equivalent surface, we have the 

equivalent or effective reflection coefficient a* 

R = (ê  - jX)sin0 -(ê  - ]X - coŝ 0)̂ ^̂  

- jX)sin0 +(Ep - jX - ooŝ 0)̂ /̂  
(2.6) 

R* = -a - jb (2.7) 

c'siî  - (c' - ooŝ 0)̂ ^̂  
(2.9) 
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where c' = - jaXwc . This is equation (2.4) written for a 

material with the complex dielectric constant c'. By a 

simple algebraic manipulation of the preceding equation, we 

can get an expression for the complex dielectric constant c' 

in terms of R* and 0: 

Rearranging to place the terms involving the square root 

on one side of the equation, we have 

After squaring and performing additional manipulations, we 

finally get the second-order equation in the complex dielec

tric constant c* : 

R' (c'siî  - (c* - ooŝ 0) = 

c'sin0 - (c' - ooŝ 0) 

where again c' = - ja'/oie . 

(2 .10)  

c'sir̂ (R' -1) = -(c' - coŝ 0)̂ /̂ (R' + 1) (2 .11)  

(c'sin0)̂ (R' - 1)̂  = (c' - coŝ Çi) (R* + i)̂  (2 .12)  

This can be solved to yield 

c- = T ± (T^- 4STsin^0cos^0)^/2 

2Ssiiî 0 
(2.13) 
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where S = (R* - 1)% 

T = (g' + 1) 2 

Of the two possible answers coming out of this expression, we 

will pick the one which gives relatively large permittivity 

and conductivity since an impedance condition in which the 

equivalent constants will be used will require that the 

refractive index of a material be much greater in magnitude 

than unity. The other equivalent constant is nearly equal to 

unity. It may be pointed out that for this latter case where 

the equivalent constant is nearly that of air, the wave will 

penetrate into the lower medium via refraction at a low 

grazing angle. In the case of the equivalent constant which 

is large in magnitude, the angle of refraction in the lower 

medium will approach 90 degrees and the low value of the 

reflection factor for this equivalent plane surface will be a 

consequence of conduction losses. 

Figures 2,6 to 2.8 show how the equivalent surface con

stants of different materials vary as a function of wave

length, and the angle of incidence. For all of these 

materials, as the surface becomes less effective in 

reflecting an incident wave, the equivalent permittivity and 

conductivity increase. 
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Figure 2.6, Equivalent surface constants for rough sea 
and fresh water surfaces. 
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WAVEGUIDE-MODE ANALYSIS 

General, In order to demonstrate the role of surface 

roughness on the properties of tropospheric waveguides, 

through the the artifice of an equivalent complex dielectric 

constant with finite conductivity, we will examine two simple 

profiles: linear and bilinear, as shown in Figure 3.1 below. 

z 

N N 

N 

« » 

N N 

(a) Linear (b) Bilinear 

Figure 3.1. Simple linearized refractive index profilas. 

Mode attenuation and phase velocity as functions of wave

length, lapse rate, duct height and surface roughness con

stants will be calculated. For comparison, data on ideal 

waveguides and linear M-profiles and snooth-eirth diffractiDn 
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parameters will also be cited. The approach usas a linearly-

segmented representation of actual profiles. By using this 

segmentation of the profile, there will he no unwanted 

reflections which would otherwise occur at step 

discontinuities ia the refractive index. 

Basic method. Consider a 2-dimensional waveguide in 

which a vertically polarized plane wave is obliguely 

incident. The refractive index profile in the medium inside 

the duct is subdivided into layers, inside each of which the 

M-profile is a linear function of height z. Since very small 

changes of refractive index are involved, in a given layer 

having lapse rate the square of refractive index can be 

approximated by 

n2(z) = 1 - 2K^z (3.1) 

The field inside the guide can be expressed in the product 

form 

F(x,z) = f (z) exp{-jkCx) (3.2) 

where C = ncosp = a constant by Snell's law 
z = vertical height 
X = distance along the direction of propagation 
U — t# a rviimKor* 
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Note that the sinusoidal time dependence has been suppressed 

in equation (3.2). For a specified H-profile, the wave will 

be a solution of the second-order differential equation(7, 

p.181) 

dzf/dzz + k2(nz - C2)f = 0 (3.3) 

where is the eigenvalue corresponding to the m-th mode. 

This can be rewritten as 

dz f /dzz  +  (g (z )  +  Y)  f  =  0  (3 .U)  

where g(z) = k2n2(z) 
Y =  -k2C2 

In a representative stratum ), Eg. (3.4) becomes 

d2f /dz2  +  [Bj (Z -Z j )  +  g (Z j )  +  Y ] f  =  0 

where Bj = [g(z^^^- g(z^) ]/(2^^^- z^) = Kj being the 

lapse rate in the layer between and zj . By means of the 

transformation 

n = — 3.* ( 7 .  —  z . - f  (A (z A +  Y 1  /BJ. ) 
J " " J J 

(3.6) 
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where Bj and Kj are as defined above, and B* =Bi/3, the dif

ferential equation (3.4) in turn becomes the Stokes equa

tion (13) 

d2f/du2 - uf = 0 (3.7) 

The general solution of equation (3.7) is (17, p.446) 

f(z) = Cài(u) + DAi(u') (3.8) 

where u = u exp(-j2V3) and Ai(u) and Ai(u') are the Airy in

tegral functions which are entire on the complex u-plane. 

The mode equation for a given profile is set up by using 

Eg. (3.8) in the impedance boundary condition at the ground 

(z = 0) and continuity conditions at interfaces between 

layers. The impedance boundary condition is in effect anoth

er way of expressing the relationship between the iacident 

and reflected waves at the interface between two media, one 

of which is usually air and the other an imperfect conductor 

with electrical constants and . For vertical polarization 

we have the equation 

df/dz + af = 0 (3.9) 
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• / X 1/2 
where again q = "jlc/(^r " Dc/tiie) . This equation can be 

derived following a procedure given in (11, p.21). The fol

lowing are the mode conditions for the linear and bilinear 

profiles. 

Using a physical argument, the condition that the solu

tions be bounded for very large heights requires that the 

second term of equation (3.8) be zero in the case where the 

refractive index has a negative gradient with height. Ihen 

the resultant solution for the linear case is 

• f(z) = PAi(u) (3.10) 

Consequently, when we substitute this solution into the 

boundary condition at z = 0, we obtain the mode equation 

-B'Ai(u) • qAi(u) = 0 (3. 11) 

where q = - jk/(e^ - j60aX)V2 

Bilinear profile with lapse rate K^. For an improved 

approximation of an inversion layer as compared with a duct 

with a linear profile, examine a bilinear profile as shown i 

Figure 3.1(b). The profile is assumed to have a lapse rate 

over the interval (0,z^) and above z^ the normal 

tropospheric gradient is assumed. In the iuct with the 
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bilinear profile, there will be two layers for which solu

tions to Maxwell's equations can be written. As in the 

linear case, the solution t ̂{z) must satisfy the impedance 

boundary condition at z = 0« In addition, the solutions 

f^(z) and f gfz) and their normal derivatives are continuous 

across the interface a% z = z^. In each of these layers we 

have the following solutions to Stokes equation: 

Layer 1: 0<z<z,. 

f^(z) = P^Ai(u^) + Q^Ai(u«) (3.12) 

n|(z) = 1 - 2KiZ (3.13) 

Layer 2; z>z^. 

f^Cz) = QgAKu^) (3.14) 

n|(z) = 1 - 2K^z + 2Kg(z - z^) (3.15) 

P^, Q^, and Q g are arbitrary constants and 

-Bf[z + (1 - ^2)/(-2Ki)] (3.16) 

Ug = -B̂ [ z + (1 - - 2%)/2K2 ] 

5^ = (3. 18) 

Bj = (Z^ZKg)!/: (3.19) 
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The complex variable u^j denotes the quantity undefined for 

the i-th layer and evaluated at the height zj . The eigenval

ue can be found by applying an impedance boundary condi

tion at z = 0 and continuity conditions at z = z^. Thus at 

the ground, we have the expression 

P j ^ C - B J ^ A i ' *  9  Ai(u^Q)3 + 

Oi[-Blexp(-i2n/3)ai'(u^)) + qAi(ii^Q)3 = 0 

where and u£q are u^ and ,respectively, evaluated at 

z = 3. 

At z = z^, f2= f 2 dfj^/dz = d^/dz : 

PlAi(Uii) + Qj^Ai(u^»^ ) = QgAiCu^i ) (3.21) 

and 

-Pĵ Bj*Ai* (Ujj) - Qĵ Âi* (>i*ii)exp(-j2Tr/3) 

= -Ç^B^Ài(u«23^) exp(-j27r/3) (3.22) 

Equations (3.20) to (3.22) can be solved to give the mode 

equation. 

D = GO + TV (3.23) 

VuSiTG -G = + Sjài' 

T = lAi(Uj^j^) • YB'Ai' (u^ ) 
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0 = (UJ^q) + qAKuj^Q) 

V = 4'Ai(i)fQ) - B%Ai' (u'io)G%P(-i2TT/3) 

1 = -B^ Ai'(u2i)eKp(-j2n/3) 

Y = ài ) 

For a more general profile subdivided into J segments, 

there will be (J - 1) arbitrary constants Pj and Qj. There 

will also be (2J - 1) conditions: the impedance boundary 

condition at the ground and two continuity conditions at ea 

of the boundaries between layers. 
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NUMERICAL METHOD 

Having arrived at a possible representation of a rough 

surface using the concept of an equivalent surface with 

modified complex dielectric constants, we now proceed to de

scribe the important aspects of the numerical solution of the 

waveguide-mode equation of the preceding chapter. The numer

ical solution consists of three parts: (1) the statement, of 

the mode equation(s) , (2) the development of the necessary 

routines for evaluating the Airy integral functions Ai(u) and 

Ai* (u) and (3) the development of a root-finding routine foe 

solving the mode equation. 

Airy integrals. The successful solution of the 

waveguide-mode problem even for the comparatively simple 

profiles considered here depends to a large extent upon the 

accuracy and precision of the Airy integral function rou

tines. The Airy integral functions which are the solutions 

of the second order differential equation called Stokes equa

tion can be expressed in the ascending power series form of 

the complex argument u and u* (18,p.446) , 

Ai(u) = c^f - Cgg (4.1) 

where f = 1 + u3/3! + 1-4uV6! + 1 •4*7uV9! + ... 

g = u + 2u*/4! + 2*5u^/7! + 2*5.8uio/10! * ... 
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cj= 3-2/3 r(2/3) 

C2= 3-1/3 r(1/3) 

u' = uexp(-j2%/3) 

By differentiating with respect to the complex argument 

the series expansion for the first derivative of the Airy in

tegral function can also be found. Ose will also be made of 

the identity 

Ai'* (u) = uAi (u) (4.2) 

In the foregoing expression, the primes indicate 

differentiation with respect to the argument of the Airy 

function. The series f and g above can be shown to be con

vergent over the region of interest in this work. Due to the 

limitations of the procedure used for evaluating the Airy in

tegral functions, the waveguide mode problems which can be 

solved by the present method are those for which the modulus 

of any argument does not exceed 9. The first three modes of 

the ideal waveguide problem, for which the lower boundary is 

assumed to be a perfect conductor, correspond to zeros of the 

Airy integral function and its first derivative which lie 

within this regioa. We are primarily interested in the 

lowest three or four modes since these are the least 

attenuated of the waveguide modes. 
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The evaluation of the Airy integral functions can best 

be done be rewriting the secies in factored or nested form 

which permits a high number of significant digits to be re

tained following a large number of arithmetic operations as

sociated with the evaluation of the series. Accordingly we 

have for a series of k terms the following expression: 

f = l+ -(l4.-(...+—H ))...) (4-3) 
3-2 6-5 3k(3k-l) 

3 3 3 
g = u(l + H (i + u (... +_u (4.4) 

3-4 6-7 3k(3k+l) 

The essential advantage in using the factored form is that 

the operations resulting in the smallest numbers are evaluat

ed first so that for the power series we are concerned with 

the sum 

1 + u3/p(k) (4.5) 

where p(k) = 3k(3k - 1) or 3k(3k + 1) 

for which the second term is approximately lO-z. The method 

is especially important when the modulus of the complex argu

ment u is large, such as when |u| is about 9. In this case, 

f and g are relatively large quantities, of the order of 10& 

or so, such that after evaluating the Airy integral function. 
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the maximum number of digits that can be expected to be 

meaningful could be not much more than 6 to 8 so that the use 

of extended precision arithmetic (16-byte complex representa

tion) on the IBM 360 vas absolutely justified. 

In order to determine the number of terms needed in a 

given evaluation of the Airy integral functions, it vas 

decided to carry out the evaluation of the integrals for dif

ferent numbers of terms in the series expansion. This was 

done by varying the phase angle of the complex argument and 

evaluating the truncated series until no further improvement 

in the sum was seen. The result for arguments with different 

magnitudes is given in Table 4.1 and essentially indicate 

that the loaarithm of the number of terms required corre

sponds to the modulus of the argument u. 

Table 4.1. Number of terms required for power-series 
expansion of Airy integral functions. 

mod (z) Number of terms 

2 12 

4 
5 
6 
7 
8 
9 

18 
22 
26 
32 
34 
42 
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Newton-Haphson method. Foc a root-finding technique, it 

vas decided to use the Nevton-Eaphson procedure since it can 

work equally well with expressions involving complex as well 

as real arguments. The method is defined for the complex 

equation 

F(u) = g(u) + jh (u) (%.6) 

where F{u) is an analytic function of the complex variable u 

= X + jy and g (u) and h(u) are real for all u. The Newton-

fiaphson method is defined 

where is an estimate of the desired solution i^q . When 

F (Ujj) = 0 when F * (u^) =0, then 

"n = Vl 

For starting solutions u, the real zeros of the Airy integral 

function or its first derivative are used The mode equations 

are not directly expressed as functions of tha desired eigen

value; instead, they are solved for in terms of the argument 

of the Airy integral function After finding it is 

a simple procedure to calculate the eigenvalue 
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(4.9) 

The mode equation is expressible in terms of the argument u 

since all the other arguments can be expresse! in terms of 

it* The flow chart for the Newton-Haphson root-finding rou-

tiud is shown in Figure 4.1. Briefly, it has the expressions 

for the mode equation D and its first derivative with respect 

to the argument u and subroutines for evaluating the Airy 

functions Ai(u) and Ai*(u). A routine for assigning the num

ber of terms to a series expansion for an Airy function de

pending upon the modulus of the argument u is also includ

ed. The input data are 

Z1 
RL1 
Z 
ai 
ax 
DERB 

duct depth, W 
lapse rate K 
trial solution of mode equation 
relative permittivity 
X = 6oaX 

error limit 
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NUHERICAL BESDLTS 

Calculations were made for the two simple profiles de

scribed in chapter 3. For a reference against which the 

properties of the modes in ducts over rough surfaces can be 

measured, the ideal case in which the earth is assumed to be 

a perfect conductor was investigated. For the case of a duct 

having a linear refractive index profile, the mode properties 

are given in the literature. It was primarily to test the 

correctness of the equations used in the analysis that the 

ideal cases were studied. The data can be divided into those 

applicable to ducts having smooth lower walls and those for 

ducts underlain by rough contours. The former category by 

themselves constitute an important group of problems since 

previous treatments of surface-based ducts employed the 

severe simplification that the ground or water surface can be 

represented by a perfect conductor. The second set of 

results dealing with the solution of the waveguide-mode prob

lem for roughened contours represent a new method of account

ing for roughness effects. In a duct with a bilinear 

profile, attenuation ratés of the various modes can be 

readily obtained by simply using g = 0. For vertical polari

zation, this is equivalent to the mode equation df/dz = 0. 

Figure 5.1 shows how the lapse rate in a duct with a 

linear profile of refractive index affects the rate of attea-
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uation of waveguide modes. The curve shown for each material 

applies to the next two nodes (at least), sin:e the numerical 

results at corresponding lapse rates were close in value to 

each other. Next? figures 5.2 and 5.3 show how attenuation 

is changed when the lower boundary of the duct becomes rough. 

The data shown are for reflection factors (F^g ) of .1, .2, 

.3, .6, and 1-0 with lapse rate (K^) of 10"? per meter and a 

wavelength of 1 meter. Note that to find these attenuation 

rates the equivalent surface constants are different for the 

three modes and can be taken from figure 2.4 or 2.5. The 

next two figures, 5.4 and 5.5, show how the attenuation rate 

varies with lapse rate for smooth sea and moist soil, respec

tively. The lapse rates used were 10-®, 5x10-®, and 10-? per 

meter. The independent variable for the figures is duct 

depth H. Figure 5.6 indicates the manner in which surface 

roughness modifies the attenuation curves given in figure 5.4 

for sea water. The next two figures, 5.7 and 5.8, show how 

the attenuation rate varies with duct depth W. Three curves 

are shown for the first three modes in the bilinear duct. 

The effects of roughness in wave propagation inside a 

bilinear duct is indicated in figures 5.9 and 5.10 for sea 

water and moist soil at F =0.3. Finally, the last two 
rs 

figures (figures 5.11 and 5.12) portray the effect of varying 

the wavelength for a given bilinear duct. Three duct depths 

z = 100,150, and 200 meters are used as parameters. Due to 
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the limitation in computation time, a more representative 

collection of results is not possible; however, the present 

data should serve to demonstrate the importance of surface 

roughness and finite conductivity on radiowave propagation 

along the earth's surface by the ducting process. 

From the definition of the variable u, 

% = + (1 - C^/(-2K^) J (5.1) 

ve can determime the eigenvalue C once the zero of the mode 
m 

equation has been found. The attenuation rate a of each 

mode is calculated using the expression 

a = -kIm(C ) X 8686 dB/km (5.2) 
ICI in 

where again k is the wave number at z= 0, C = ncos/E) . 
mm 

The effective phase velocity of the electromagnetic wave 

inside the duct is reduced somewhat, as it turned out, by 

about a few parts in 10^ or 10* at the most. Accordingly, 

only the attenuation rates of the modes are presented as 

these depend upon the tropospheric conditions, polarization, 

wavelength, surface material and surface roughness. 

In starting the numerical solution of the mode equations 

for the linear and bilinear cases, the real zeros of the Airy 

integral functions Ai(u) and Ai' (u) were appropriate since 
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the zeros are the solutions for the ideal duct whose lower 

boundary is a perfect conductor. The choice of starting 

points for the initial estimate of the solution of the mode 

equation for the practical situation in which the earth is 

not perfectly conductive turns out to be dependent upon the 

relative magnitude of the terms in the mode equation. Con

sider the mode equation for the duct with a linear profile: 

df/dz + qf = 0 at z = 0 (5.3) 

In terms of the Airy integral function, we have the equiva

lent expression 

(-B*)df/du + gf = 0 (5.4) 

where typically B* is of the order of lO-z or less so that 

the first term is about two orders of magnitude smaller than 

the term in f. Consequently, when q is large, the desired 

solution of the mode equation is essentially determined by 

the zero of Ai(u); otherwise, Ai'(u) determines the solution. 

For the cases examined in the numerical calculations, there 

are examples of both types of solutions. 

Some of the approximations made in finding the waveguide 

modes of the radio duct will next be given. Recall that the 

factor q in the mode equation of the linear profile case is a 
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functioa of the surface impedance of the ground. In all the 

cases involving smooth surfaces, solutions were sought under 

the assumption that surface impedance presented by the ground 

to an incident wave is to a good approximation the same as 

its characteristic impedance, k more accurate representation 

of the ground's surface impedance uses the following modifi

cation: 

Z = n[1 - (Y2sin20) /Yf ] 

where n = characteristic impedance of the ground 

Y* = - ewi* 

y^= jwyfl -

It turns out however that the dependence upon the angle of 

incidence is a second-order effect since the cosine of a 

small angle, approximately .01 radian, is involved. This is 

especially true when the ratio Y^/Y^ is small, such as for 

sea water, for the case of dry soil, which has a relative 

permittivity of 4 and a conductivity of 10-3 mhos per meter, 

the correction would have to be made if a high degree of ac

curacy is desired. On the other hand, in the case of rough 

surfaces represented by means of smooth surfaces with equiva

lent dielectric constants determined by the scattering geome

try and the electrical properties of the original rough 

surface, this approximation will not be acceptable. This is 
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stants to small changes in the value of the angle of inci

dence. However, as a first approximation, it is permissible 

to take the angles associated with the first, second and 

third modes of the smooth surface problem, usa them to calcu

late the equivalent surface constants and solve the mode 

problem for the three modes in the rough-surface case. For a 

given mode, the surface constants are kept fixed as the duct 

width is varied. The numerical calculations which were 

performed indicate, however, that the angle of incidence of 

the mode varies with duct width so that it would be desirable 

to iterate the procedure so that the characteristic angle of 

elevation of a mode agrees with that used in calculating the 

equivalent constants of the rough surface. The effect of 

using surface constants which are not exact for the mode is 

not severe, however, as the actual attenuation rate differs 

from the approximate value by a few percent. For example, at 

Fj,g = 0.3 and K ̂  = 10-? per meter, we can see in figures 5.2 

and 5.3 that attenuation rates for sea water and moist soil 

differ by approximately 11 percent. The following table 

shows how the characteristic angles of the first three modes 

in a duct having a linear refractive index profile change 

with mode order m. Information about the elevation angles 3f 

the various modes in a duct with infinite conductivity is 

valuable in solving the problem involving an imperfect 
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conductor for the lower wall of the guide. 

Table 5.1. Elevation angles of duct modes. 

Mode order 

Elevation angle (millirad) 

Sea water Hoist soil 

1 4.8 4.8 

2 6.4 6.4 

3 7.4 7.4 

This and knowledge of the real zeros of the airy funct

ions indicate the following procedure for finding the modes; 

Starting at a height which is adequate for supporting the 

desired mth mode, and using as the first trial zero the m-tb 

zero of the appropriate Airy function, solve the mode equa

tion using a Newton-Baphson procedure as described earlier. 

The duct depth will be incremented and the previous eigenval

ue used as the first estimate of the solution (eigenvalue). 

By judiciously selecting the increment in duct depth, it is 

then possible to take advantage of the computational result 

that the eigenvalues lie along a line in the third quadrant 
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which tends to move away from the real axis as the duct depth 

is decreased toward zero. This procedure tends to reduce 

computation time as the eigenvalues can be reached in a few 

iterations of the Newton-Raphson routine. 
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Figure 5.1. Atteauatioa rate vs. lapse rate for four 
amooth surfaces. 
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Figure 5.2. Atténuation rate vs. F^g for the 
first three iodes in a linear duct over sea 
water. Kj = 10-? m-i, A = 1.0 m. 
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Figure 5.3. Attenuation rate vs. for the 
first three nodes in a linear duct over moist 
soil. K| = 10-7 m-if A = 1.0 n. 
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Figure 5.6. Comparative attenuation rates for 
first modes in ducts with bilinear profiles over 
rough sea water. P^g = 0.3. 
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Figure 5.7. Attenuation rates of the first thre 
•odes in a duct with bilinear profile of refract 
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Figure 5.8. AtteBuatioa rates of the first three 
modes in a duct with bilinear profile of refractive 
index over smooth moist soil. Wavelength = 1.0 m. 
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Figure 5.9. Attenuation rates of the first three 
modes in a bilinear duct over rough sea with F = 
n 1 ns 
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Figure 5.10. Attenuation rates of the first three 

nodes in a bilinear duct over rough moist soil with 
F gg = 0.3. 
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Figure 5.11. Attenuation rate vs. wavelength for 
sea and fresh water. Bilinear profile of refrac
tive index. Duct depth is indicated by number near 
the curves. 
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Figure 5.12. Attenuation rate vs. wavelength for 
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index. Duct depth is indicated by number near 
the curves. 
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DISCDSSION 

The results presented in the preceding chapter are 

admittedly based upon a limited number of examples, a conse

quence of the rathec appreciable amount of computing time ex

pended in developing the routines for evaluating the Airy in

tegral function with complex argument. The choice of the 

range of lapse rates considered in the bilinear problem was 

dictated by the routine for evaluating the Airy integral 

function. It was decided at the time the data runs were made 

that the Airy integral function will be evaluated only when 

the argument has a modulus of about 9 units or less, which 

would call for a truncated power series expansion involving 

at the most forty-two terms in the third power of the complex 

argument u. This restriction on the modulus of the argument 

of the Airy integral function comes about because of the 

occurrence of arguments of the type 

"u = "10 - (6-1) 

for the bilinear problem. 

It can be readily seen that for a lapse rate oflO-* per meter 

and a duct height z^= 100 meters, the product can 

range in magnitude from 1 to 10. 
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The procedure used in evaluating the power series expan

sion of the Airy integral function does not ia all likelihood 

represent the optimum technique. There could be other non

standard methods for evaluating power series with complex ar

guments such that the precision inherent in the use of double 

precision can ba fully utilized. Such techniques as scaling 

and translation come to mind and probably deserve a better 

examination for their possible application in problems of the 

type considered in this thesis. The results described below 

were obtained with the Airy integral function evaluation done 

in double precision arithmetic and with the series expansion 

of the function expressed in the nested form. 

Linear_2rofile_gver_smgoth_5urfaces. In looking at the 

graphs of the attenuation rates of the first mode in a duct 

with a linear profile of refractive index for smooth surfaces 

we discern the following patterns; (1) attenuation rate a 

increases with lapse rate over the range of values consid

ered; (2) attenuation rate increases with the modulus of the 

complex dielectric constant - ja/we^; and (3) the graphs 

of the rate of attenuation for the modes are approximately 

the same for a given surface. Since the first two observa

tions are applicable also to the bilinear case, their discus

sion will be deferred until after the results for the 

bilinear analysis have been examined. It is apparent that 
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when modes are wholly lacked, in the sense that there is suf

ficient duct depth for supporting them, the attenuation rates 

are remarkably similar for the three modes considered. Upon 

examination, it turns out that this is a consequence of the 

approximation that the surface impedance of tke ground does 

not change with the angle of incidence. As discussed 

earlier, this approximation works rather well when the 

modulus of the complex dielectric constant is appreciably 

greater than unity. The effect is of secondary importance 

since broad flat natural surfaces are seldom ancounterad 

under most propagation conditions. It is to be noted that 

the eigenvalues of the mode equation lie near the zeros of 

the first derivative of the Airy integral function Ai'(u). 

Bilinear_2cofile_of_refractive_index. Naxt we look at 

the manner in which the attenuation rate of the first mode 

varies with lapse rate within the duct for tha bilinear case. 

The next two sets of graphs depicts the manner in which at

tenuation rate changes with lapse rate for a given duct 

height. Here the results are consistent with those for the 

linear case in those cases in which the duct is sufficiently 

deep to support the modes. Thus it can be sean that the 

least attenuated first mode is that in the duct with the 

lowest lapse rate. The trend shown by the three curves for 

the first mode over smooth sea water at three different lapse 
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rates is that when the duct depth is sufficient, the lowest 

attenuation occulî when the lapse rate is least. Another in

teresting feature of this set of curves is that complete 

guiding does not occur at the same value of the refractive 

index contrast An = , as indicated by the "knee" of the 

a vs. ¥ curves. Instead, the apparent trend is that at 

higher lapse rates the contrast An is greater than that at 

low values of K. By comparison, the work of Hait and 

Spies (11) and also that af Chang (18} show that for elevated 

ducts egual attenuation occurs for equal contrast An. Note 

that a comparison between elevated and surface ducts is dif

ficult to make in view of the different mechanisms causing 

mode attenuation. In the case of surface ducts, both ground 

dissipation and leakage through the top of the duct bring 

about energy loss, whereas for elevated ducts energy is lost 

only through leakage to regions above and below the duct. 

At the other extreme, when quasi-propagating modes are 

indicated since the radio duct is not deep enough, the oppo

site behavior is observable, namely that attenuation de

creases as lapse rate increases. Note that the duct depth 

has to be greater when the lapse rate is less; this is con

sistent with the requirement that a wave has to take a longer 

distance over which it can be refracted if the lapse rate is 

low, for ducts which do not have sufficient depth, the three 

modes experience differing degrees of attenuation, with the 
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lowest modes being attenuated least. Nota also that at the 

limit when the duct depth is zero, the attenuation rate of 

the "modes" are those for smooth-earth diffraction. A possi

ble explanation of this phenomenon is that whan the lapse 

rate is small the duct must be relatively deep for bona_fida 

modes to be supported. For a given amount of energy to be 

conveyed along tha surfaced-based guide, the energy density 

within the duct varies inversely with duct depth. Thus it 

seems reasonable that the electrical field at the air-ground 

interface must be lower and consequently the attendant con

duction loss in the surface material is lass than would be 

case if the duct were shallower. 

The foregoing discussion might be compared with the the

oretical prediction for the rate of attenuation in a 

rectangular waveguide. In Brown et al. (21, p.262), for ex

ample, we will find that the rate of attenuation for a field 

in the TE mode iaside a rectangular guide is inversely, pro

portional to the crossguide dimensions. 

The modes in ducts having the same refractive index 

profile may be compared when the lower boundaries have dif

ferent electrical properties. The trend that can be observed 

is that the surface having lower conductivity supports modes 

which are attenuated less than those in a duct over a 

relatively better conductor. This agréas wits the reiinltis 
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obtained for the linear-profile ducts. 

Finally, Figures 5.11 and 5.12 show how the attenuation 

rate of the first mode in a duct with a given refractive 

index profile varies with the wavelength of the field inside 

the duct. The data for three duct heights show the common 

trend that the rate of attenuation per unit distance in the 

direction of propagation varies directly with wavelength: the 

longer the wavelength, the higher the attenuation, the longer 

wavelengths seemingly exhibiting a greater tendency to leak 

through the upper region of the duct. The curves for sea and 

fresh water track rather well, especially at short wave

lengths. This trend can be ascribed to the manner in which 

the factor 

q = -jk/(Er - jo/wE. 

varies with wavelength. 
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COHCLUSIONS 

This work was intended to incorporate the effects of 

surface roughness and the finite conductivity of the ground 

in the formulation of the waveguide-mode propagation problem 

for surface-based tcopospheric ducts. The concept of a 

scalar rough-surface reflection factor F^g, based upon the 

principal effect of surface roughness, namely diffuse scat

tering and the attendant reduction of the observed field, was 

introduced. By this procedure, a rough contour can be re

placed with an equivalent imperfectly conducting «plane, the 

electromagnetic properties of which are determined by those 

of the assumed homogeneous rough surface and the factor F . 

Calculations based on typical surface duct parameters 

showed some rather significant results. First, in contrast 

with previous assumptions, modes over relatively "good" 

conducting surfaces are attenuated more, not less, than those 

over "poorly" conducting surfaces. Second, surface roughness 

causes an important change in mode attenuation: the rougher a 

surface is, the higher the attenuation of a mode. Also, for 

sufficiently rough surfaces, such as those with F of ap-
rs 

proximately 0.3 or less, the difference between the attenua

tion curves for different materials is relatively small. 

The results described earlier suggest some areas for 

possible investigation, one of these has to do with the 
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mechanism for long-range radio propagation via radio ducts. 

Since the results show in part that a good conductor such as 

the sea causes a higher rate of attenuation in a wave 

propagating over it, long-range propagation under inversion 

conditions must be accounted for by some mechanism other than 

that involving the sea or ground as a boundary of the duct. 

Information concerning the manner in which the mode proper

ties are affected by the surface reflection factor, and more 

realistic, and often more complicated, profiles of refractive 

index should be examined. One interesting case would be to 

study the SS duct (elevated layer, surface duct) in order 

that we might determine whether long-distance propagation is 

best supported in an elevated layer or within a surface-based 

duct. It should be stressed that the ES duct referred to 

here is different from the elevated ducts studied by Wait and 

Spies (12) and Chang(13) (see figure 1.2). 

In any proposed application of the linear-segmented 

profile method for radio ducts, a serious disadvantage is 

present in the power-series expansion of the Airy integral 

function. Other techniques for solving the mode equation 

should be studied so that the fuJl potential of the method 

used in the present work can be realized. Analog computation 

techniques should be examined and, if found to yield results 

faster and relatively inexpensively, the method could be con

sidered for such applications as remote-sensing of the 
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troposphere, propagation path prediction, etc. Accordingly, 

the next step to take is to find more powerful means for 

solving the wavegaide-mode problem, especially for cases 

where the refractive index profile has to be more accurately 

represented by many linear segments. Hopefully, we might see 

some potential contributions being made in tha areas of 

radiowave propagation mechanisms in the troposphere and in 

remote sensing in the atmosphere. 
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APPENDIX: COaPOXER PROGRAM LISTING 

C*****paoGaAM TO FIND THE MODES IN A DOCT WITH A BILINEAR 
C*****paoFIlE OF REFRACTIVE INDEX. 
C*****THE FOLLOWING NOTATION IS USED IN THE PROGRAM: 
C 
C z STARTING VALUE OF THE SOLUTION 
c Z1 DUCT WIDTH IN METERS 
C RE RELATIVE PERMITTIVITY 
c EI X = 60 X CONDUCTIVITY X WAVELENGTH 
C WL WAVELENGTH 
C ZQ GROUND CONSTANT 
C CM MODE EQUATION 
c FM FIRST DERIVATIVE OF THE MODE EQUATION 
c ZANG MODE ANGLE 
c ZTHETA SOLUTION OF THE MODE EQUATION 
c 
c AS GIVEN HERE, THE PROGRAM CALCULATES THE COMPLEX MODE 
c ANGLE "ZTHETA" FOR A SPECIFIED RANGE OF VALUES OF 
c DUCT HEIGHTS "Z1". THE RANGE IS FROM 
c "21" ro "RLIM" AT STEPS OF "RDEL". 
c TO US S THIS PROGRAM FOR A LINEAR PROFILE OF REFRACTIVE 
c INDEX, THE PROGRAM IS SLIGHTLY MODIFIED SINCE THE MODE 
c EQUATION FOR THIS CASE IS SIMPLER. 
c THE FOLLOWING STEPS REPLACE THOSE STARTING WITH THE 
c 
c 

Ul = Z STATEMENT DP TO Z = Z - CM/FM 

q*********************************************************** 

c*************************** ******************************** 
CALL AI1(Z,AI,IZ) 
CALL AI2(Z,AA,IZ) 
CM = -B1*AA • ZQ*AI 
IF (CDABS(CH) .LE.DERR) GO TO 666 

C OTHERWISE, FIND NEM ESTIMATE USING NEWTON'S METHOD 
FM = -B1»Z*AI + ZQ»AA 
IF (CDABS (FM) LE.DERH) GO TO 555 

C IF NOT, CALCULATE NEW Z 
Z = Z - CM/FM 

q*************************** ******************************** 
^*********************************************************** 

C 
C MAIN PROGRAM MAIN PROGRAM 
C 

IMPLICIT C0MPLEX*16 (A-C, F, U-Z) , REAL»8 (D, R) 
lU /A/ww MK» w 

REAL*8 RL(5) 
C0MPLEX*16 2IN(5) 
REAL+8 CDABS 
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REAL*8 B1,B2,BK,CI 
REAL*4 CMR,CMI,DA,DB,DC,ABS 
ERR = 1.E-4 
DATA ZJ/(O.DO, UDO)/ 
READ,aE,BX,gLMDA,BL1,gL2 
BEAD,Z1,Z 
WRITE (6, 13) 

13 FORMATAI») 
ZS=Z 
DPI = .311* 159265358979 301 
DERB = 1.D-6 
RL2 = 1.25E-7 
DP2 = DPI*DPI 
DK2 = .40D1*DP2/SLMDA**2 
ZREAL = (1.00,0.000) 
CI = DSQSr (3.00)/2.D0 
za = DCHPLK(-. 5D0,-CI) 
CJ = (0.,1.) 
E=10 
S=.01 
WL= 1. 

C CALCULATE VALUES Of 010,0 11,021 AT LEVELS Z=/ AND Z = Z1 
1 = 1  
J = 1 
ZQ = (-ZJ*.200 1*DPI/RLMDA) /CDSQRT (DCMPLX (RE,-RX) ) 
D3 = 1. DO/3. DO 
B1 =. -((DK2*2.D0*aLl)**O3) 
32 = (DK2*2.D0*aL2)**D3 
BK = -B2*RL1/(B1*BL2) 
CM 1 =0. 

7 CALL ZSIZE (Z,IZ) 
IF(I.GT.20) GO TO 666 

C*************************** ******************************** 
(;*•••***••••*»********»•***•*•*****•**•••»•*•»**••*••»****** 

C START OF THE CALLING ROUTINE FOB BILINEAR PROFILE PROBLEM 
U1=Z 
US = U1 
V1=U1*ZU 
02 = U1 - B1*Z1 
V2 = D2*ZU 
V3 = ZU»( U1*BK + B2*RL1*Z1/RL2) 
CALL AI2(V1,BPIOflZ) 
CALL All (U2,A1 1,IZ) 
CALL AI2(U2, APn,IZ) 
CALL AI1(V3,B21,IZ) 
CALL All (V2,B11,IZ) 
CALL AI2(V3,BP21 ,IZ) 

CALL AI2 (D1,AP10,IZ) 
CALL All (U1,A10,IZ) 
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CALL All (VI,BIO,IZ) 
C*****FORM THE MODE EQUATION CB*** 
C 

CX = -B2*ZD*BP21 
CY = B21 
or = B11*CX + B1*ZD*BP11*CY 
CT = A11»CX + B1*AP11*CY 
CP = -B1*AP10+Z0*A10 
CR = -B1*Z0*BP10 + ZQ»B10 
CM(MM,KK) = -(CH*CP/CT) + CR 
PRINT,I,01,CH 

IF (CDABS (CM) .LE.DEBB) SO TO 666 
C***$*A NEW ESTIMATE OF THE POINT "01) 

CZP = Z0*Z0*(-B2)*B21*73 
CYP = BP21*ZD»BK 
CWP = BP11*Z0*CX + B11*CXP 

1 + B1*ZU*(B11*V2*Z0*CY + BP1 1*CYP) 
CTP = AP11*CX + A11*CXP + B1*(02*A11*CY + AP11*CYP) 
CPP = -B1*01*A10 + ZQ+AP10 
CRP =(-B1*ZU*Vl*B10 + Z0*8P10)*ZU 
FH = (-(CT*CWP - CH*CTP) *CP/(CT*CT) ) - (CH/CT) •CPP + CRP 
PRINT,I,FM 
PRINT,CWP,CPP,CTP,CRP 
DFM=CDABS(rM) 
IF(DFM.LE.DERR) GO TO 555 

C*********************************************************** 

C***********************************************************. 
C THIS ENDS THE SECTION OF THE PROGRAM FOR USE IN SOLVING 
C THE MODE PROBLEM FOR THE DUCT WITH BILINEAR PROFILE 

Z = Z - CH/FII 
REALZ = ZREAL*Z 
IF (REALZ.GT. l.ODO) GO TO 333 
1=1+1 
GO TO 7 

333 2 = ZS-.5D0 
ZS = Z 
1=1+1 
GO TO 7 

555 Z=Z-.1D0 
1=1+1 
GO TO 7 

666 PRINT,I,Z,CH(MM,KK) 
PRINT,LZ,IX,Z1 ,RX 

C FIND THE KODE ANGLE 
ZC2 = l.ODO - Z*2.0D0*RL1/B1 
2THETÂ = CDSQRT(ZC2) 
PRINT,ZC2,ZTHETà 

C CALCULATE THE COMPLEX MODE ANGLE 
ZANG = -ZJ^CDLOG(ZTHETÂ + CQSQHT (2C2-1.ODO)) 

C**** CHECK IF THE COMPUTED VALUE OF ZANG IS CORRECT 
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ZTH = CDCOS(ZANG) 
WRITE (6, 17) ZANGfZIH 

17 FORMATC ','ZANG = • ,5 X,D28. 1 6 ,5X,D28 . 15 , /, 
2» (COS (ZTH) = », 5X, D28. 16,5X,D28, 16} 
WRITE (6,31) 

31 FOEMAT('0',/////) 
777 CONTINDE 

STOP 
END 

SUBROUTINE AI1(Z,ZAI,K) 
IMPLICIT C0MPLEX*16(Z) 
C0MPLEX*16 F(50),G(50), DCMPLX 
REAL*8 DSQRT.CAfCB 
DATA CAfCB/.355028053887817, .258819403792 807/ 
ZU=DCMPLX(-. 5D0,-DSQfiT (3. DO) /2.D0) 
Z3-Z**3 
L=3*K 
F(K) =1.D0 +Z3/tL*(L-1)) 
G(K) = 1.D0 + Z3/(L* (1-1)) 
M=K-1 
DO 90 1=1,M 
J= K-I 
N=3*J 
F(J) = 1.D0+F(J+1)*(Z3/(N*(N-1))) 
G(J) = l.D0*G(J+l)*(Z3/(N*(N+1))) 
IF(J.GT. 1) GO TO 90 
IF(J.EQ.I) GO TO 20 
GO TO 90 

20 ZAI=CA*F(1)-CB*G(1)*Z 
90 CONTINUE 
99 CONTINUE 

RETURN 
END 

SUBROUTINE AI2 (Z,ZAA,K) 
IMPLICIT C0MPLEX*16(Z) 
C0MPLEX»16 F(50),G(50), DCMPLX 
REAL»8 DSQRT,CA,CB 
11 = 1 
DATA CA,CB/. 355028053887817, .258819403792807/ 
Z3=Z**3 
L=3*K 
t (fi) — I . U v/T AiJ/ \ \ii- I j ̂  yu-J) j 
G{K) =1.D0+Z3/(L*(L-2j) 
M=K-2 
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DO 90 1=1,M 
J=K-I 
»=3*J 
F(J)= 1-DO + F(J+1)*(Z3/({N-1)*(N-3))) 
G(J) = 1.D0 + G(J+1)*(Z3/ (N*(N-2))) 
IF(J.EQ.2) GO TO 20 
GO TO 90 

20 F(1) = F(2)*(Z*Z /2. DO ) 
G(1) = 1.D0 + G (2)* (Z3/3.D0J 
ZàÂ = CA*F(1) - CB*G (1) 

90 CONTINUE 
99 CONTINUE 

BETURN 
END 

C 
c  
c  

SUfiBOUTINE ZSIZE{Z , IZ)  
C0MP1EX*16 Z 
REALMS RZ.CDABS 
BZ =  CDABS (Z) 
IF (BZ.LE.2.ODO) GO TO 41 
IF (BZ.LE.4.ODO) GO TO 42 
IF (BZ.LE.5.ODO) GO TO 43 
IF (BZ.LE.6.ODO) GO TO 44 
IF (BZ.LE.7.ODO} GO TO 45 
IP(BZ.LE.8.0D0)  GO TO 46 
IF (BZ.LE.9.ODO) GO ro  47 

41 12=12 
GO TO 7  

42 IZ=18 
GO TO 7  

43 12=22 
GO TO 7  

44 12=26 
GO TO 7  

45 12=30 
GO TO 7  

46 IZ=34 
GO TO 7  

47 IZ=42 
7  BETORN 

END 
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