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LIST OF SYMBOLS

mode attenuation, decibels per kilometer
(dB/km)

Airy integral function
2k2K,per meter3
BY3, per meter

equivalent complex dielectric constant
of rough surface

cosine of complex angle of incidence at
ground

electric field intensity, volts per meter
rough-sur face reflection factor

surface roughness characteristic height
(rms) ,met er

duct height, meters

magnetic intensity, amperes per meter
stratum or layer number

wave number, per meter

lapse rate of refractive index, per meter

lapse rate of refractive index inside
duct, per meter

gradient of refractive index for standard
atmosphere, per meter

mode order
refractive modulus
refractive index

refractivity = (n - 1) x 106
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Fresnel reflection coefficient of plane surface

Presnel reflection coefficient of equiva-
lent surface

complex variable

uexp(-j<m/3)

duct depth, meters

o/we = 600A

vertical distance from ground level, meters
effective ground surface impedance, ohms
permittivity, farads per meter
permeability, henrys per m2ter
conductivity, mhos per meter
characteristic impedance of ground, ohms
angle of incidence, radians

grazing angle, radians

wavelength, meters

frequency, radians per second



INTRODUCTION

When the atmospheric conditions are such that.the
refractive index of the air decreases with height, as is fres-
quently the case in shallow but horizontally extended regions
of the troposphere, decimetric and shorter radio waves can
undergo pronounced refraction and thus be trapped within
these layers and quided along the surface of the earth. This
results in intense fields near the surface of the earth, far
exceeding those obtained under "normal" conditions. This
propagation mechanism, referred to variously as waveguide-
mode or duct propagation or trapping, depends upon rather
minute changes in rerfractive index; refractive index con-
trasts as small as 5 N units ( N = (n - 1) x106, where n is
the radio refractive index of the atmosphere) are capable of
supporting modes in the upper VHF band. Prequencies extend-
ing up to 1000 gigahertz are influenced by refractive gradi-
eats in the atmosphere. This difference can be attributed to
the ability of the polar molecules of water to respond to the
electrical stimulus supplied by a passing radio wave.

The waveguide mode of propagation was first recognized
more than fifty years ago as the mechanism for long-distance
trans-oceanic radio communication, having been suggested by
Watson(1,2) in 1919. Watson proposed that high-frejuency

wWaves propagate between the earth and the ionosphere in a



manner analogous to that in parallel-plate waveguidass, with
vaves being reflected successively from the earth and
ionosphere. Numerous observations of manomalous" propagation
"effects were reported in the late thirties and early forties
and includ2d such phenomena as greatly extend2d propagation
distances, severely reduced ranges, as well as improved
television reception at twilight and early evaning hours. &
considerable amount of theoretical and experimental effort
was devoted to atmospheric refraction during World War II in‘
view of the military applications and significance of the
phenomenon. The book edited by D. E. Kerr(3) and the report
of the British Physical Society in 1948, "Meteorological
Factors in Radio Wave Propagation®(4), represant a summary of
the wartime effort on the part of the Americans and Britich,
respectively. T. L. Eckersley(5), with Miilington(6), con-
tributed a great deal to the development of the theory of
tropospheric refraction. The full impact of the work of
these two researchers was not entirely appreciated during
their time, however, due in part to the alleg2dly difficult
style in which they wrote. Budden(7) further developed the
ideas of tropospheric refraction in a monograph published in
1960; his book is a particularly fine introduction to the
subject of mode propagation. In many ways, the subject of
atmospheric refraction has been well-studied. It is signifi-

cant, however, that until now, investigators have omnly



glossed over the effects of surface roughness and the finite
conductivity of natural surfaces in the short-wavelength por-
tion of the radio spectrum. For this reason, this work will
attempt to extend the theory and methods of radiowave
propagation in the atmcsphere in order to ass2ss the effects
of the above-mentioned parameters in the propagation mecha-

nisnm.

Before going into the solution of the mole problenm
itself, a brief introduction to the meteorological elements
of the problem and the basic theory of waveguide-mode
propagation will be nade.

The refractivity of a well-mixed parcel of air, having
temperature T and pressure p has been empirically described

in the following eguation:
= _ A
N= (n - 1)x106 = T(p + Be/T) (1. 1)

partial pressure of water vapor, mb

where e =
A = 79°K/mb
B = 4800°K
n = n(z), the refractive index of air

In wave propagation studies, the form given above is commonly
used; in meteorology, the usual unit is the refractive

modulus ¥,

M = [n(1 + z7a) - 1]x106



Qr
M=N+ (272)x106 (1. 2)

wvhere N = (n - 1)x1086 .
n = n(z), the refractive index of air at height 2z
a = radius of the earth

The term z/a is a correction factor for the actual refractive
index of the atmosphere and is used in an earth-flattening
procedure whereby the relative curvature betwzen the earth
and a radio ray is maintained when the earth is "flattened"
(2+») and the air replaced by a fictitious medium with the
refractive index (n ¢+ 2z7a). A detailed derivation of this

procedure may be found in Pekeris(8).

Examination of equation (1.1) will show that the refractive

index may decrease with height according to the following
changes in the parameters T and e:

(a) decrease in vater-vapor pressure

(b) increase in air temperature

These meteorological events occur when there is advection,

subsidence, radiation, or a combination of thase processes

(9, pp. 132-134). The occurrence of radio ducts under these
conditions is fairly regular in a temporal sease and has been
obsurved in tropical, subtropical, and temperate regioms of

PR N T RS - |
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Due to the constant mixing taking place in the atmos-
phere, there are tvwo observable patterns in the vertical
profile of refractive index. First, there is the fine-scale
fiuctuation pattern due to relatively high gradieants occur-
ring over distances which are short compared with a wvave-
length. The other pattern is the gross, or large-scale, var-
iation to which the incidence of radio refraction is attri-
buted by current theory. These variations in the refractive
index as a function of height are depicted below in a replica
of a profile taken with airplane-borne instrumentation

(Figure 1.1).

1S00

{000

Height (m)

Soo}

o 1
260 270 280 2% 300 3o
N=Cn-NDxio®

Figure 1.1. Beplica of an actual refractive index
profile takenrn by instrumentation in an airplane. (trom du

Castel (10)) .



Conventionally, radio ducts may be classified according
to their location with respect to the surface of the earth,
as shown in figure 1.2. 1In these schematic representations
of the average refractive index profile, the corresponding
graphs of the temperature and humidity are included. & great
variety of these types of graphs are to be found ig refer-
ences 3,9, and 11.

In this paper we will consider surface ducts alone,
since these might be expected to be affected by surface con-
ditions, so that all types of SS and ES ducts should be in-
cluded for completeness. Of the latter kind, those cases in
which the duct depth W is low enough so that the downgoing
component wave of a mode actually reaches the ground are im-
portant but these will not be considered here. Wait and
Spies{12) and Chang(13) have published some analyses of
elevated tropospheric ducts. Their uss of ths lineac-
segmented profile technique is an important feature of the

work to be described herein.

In metallic waveguides, waves travelling along the
guide axis can be represented by crossing pairs of component
waves. The discrete number of these pairs (“modes") depends

upon the spacing between the guide walls and the wavelength
of the field. At either wall, each component wave will have

its wave normal making an angle @ with respect to the



SS duct ES duct EE duct
surface layer elevated layer elevated layer
surface duct surface duct elevated duct

——J'emperature ———
Potentlal Temperature ——

NI

I

Helght——»

——Specific humidity——»

W
' W\
3 | B o

f

Modified refractive index——»

Figure 1.2. Types of radio ducts.



waveguide axis. It is possible, however, for a single
conductive plate to act as a waveguide provided that it can
constrain a wave launched over it to remain in contact with
the surface. In surface microwave guides, 3 3islectric
coating or corrugated structure facilitates the desired
guiding function; in the troposphere, any guidiag action
depends upon the occurrence of a negative gradient of
refractive index and one which is pronounced =nough so that
an upward-going vave will eventually be refracted downward.
In elevated ducts, it is not necessary that a conductive wall
be present.

There are two possible approaches to the analysis of
modes in tropospheric waveguides. In the first and most fras-
quently employed technijue in the past, the phase integral
approach (7, pp. 116-118), each component wave of the modes
is made to satisfy the condition that upon complete traversal
of the space between the guide walls or between the lower
bcundary of the guide and some to-be-determina2d height in the
medium the total change in phase is some multiple of 27w
radians. This method is extended to the case of a lossy
nedium by allowing complex values of phase, with the result
that numerical solupions require the use of contour integra-
tion. The extension of the method was a contribution of
Eckersley and Millington, op. cit. The method is also capa-

bie of dealing with the problem of diffraction around the’



carth and the interested reader is referred to Budden for ad-
ditional inférmation.

The phase integral approach just sketchel is essentially
an application of ray theory to radio propagation and
inherently is thus unable to account for the relatively
strong fields outside ducts; furthermore, contour integra-
tion is not readily done numerically when the refractive
index profile is not representable in terms of some simple
functions. The full-wave solution appears to have the capa-
bility of surmcunting the limitations of the previous method
in the general case where the profile is best da2scribed by
straight-line segments and the lower boundary is not plane.
The full-wave solution arises from the use of the differen-
tial equation to describe the field inside the radio duct.
To-date, it has been used by Wait and Spies(12) and Chang (13)

in idealized mode probleas.
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SURFACE ROUGHNESS EFFECTS

éome of the motivation for studying the 2ffects of
surface roughness on tropospheric waveguides is due to the
work which this writer did for his master's thesis on the
subject of depolarization of electromagnetic waves by rough
conducting surfaces. Terrestrial line-of-sight microwave
conmunication links and other radio systems which operate
near the earth's surface are susceptible to the effects of
surface roughness. A search of the available literature
revealed that previous investigators always assumed that the
earth could be considered a smooth perfect conductor, even at
wavelengths in which the roughness structure of the grounmd or
sea was large in comparison with a wavelength. The.assump-
tion will often be acceptable at long wavelengths since the
complex dielectric constant €r = jo/we, will then have a large
imaginary part. In this chapter, we will propose a method
for including surface properties in the formulation of the
waveguide-mode problem in surface-based tropospheric ducts.

The assumption of a perfectly conductive earth is equiv-
alent to one of tne following conditions, depending upon the

polarization of the incident wave:

R =-1 or R = 1 2.1
h ( )
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where R is the Fresnel reflection coefiicient and the sub-
scripts “v® and "h" stand for vertical and horizontal polar-
ization, respectively. In the "full-wave"™ solution, to be
discussed in the next chapter, equation (2.1) is equivalent

to forcing one of the following conditions at z = O:

f(z) = 0 (horizontal polarization)

dfsdz = 0 (vertical polarization)

where f(z) refers to the electric field for horizontal polar-
ization and to the magnetic field for vertical polarization.
Approximating the reflection coefficient by +1 or -1 holds
for a wide range of grazing angles and materials, as can be
seen in Figures 2.1 and 2.2. This is especially true at low
frequencies, corresponding to long wavelengths. This is in-
dicated by the large values of X = 600X = o/we, on the two
figures. It is the dependence of the Fresnel reflection co-
efficient uvon the electrical constants of surfaces which
will be exploited in the approach to be presented shortly.
First, we will look at some of the simplifyiag assumptions
employad in the method.

In a representative waveguide in the troposphere, the
elevation angles of the wave normals are less than a degree;
for soil and water, the magnitudes of the reflection coeffi-

cients are nearly equal to unity for near-grazing amglaes of
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‘-:H H
% 6| Mdist soil
i ‘
0 30 60 90
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Figure 2.1. Magnitude and phase of Fresnel reflection
coefficient for moist soil. Horizontal polarization.
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ical polarization.
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incidence. Such is not the case with ionospharic waveguides
vhere the mode angles can be several degrees above the
horizontal. Accordingly, the principal detsrmining factor of
the ability of the ground to reflect an incident wave is 1its
roughness profile: the rougher the profile, the less energy
is reflected in the specular direction.

For an estimate of the value of the angle of imcidence
vhich is to be used in calculating the equivalent surface
constants, vwe will look at the ideal case when the lower
boundary of the guide has perfect conductivity. For a givea
refractive index profile, we can solve for tha2 directions of
the wave normals for each mode. It is encugh to consider
only the first mode in a given case since this gives the
lowest valqe of the angle of incidence 8. The angle 6 is the
angle between the wave normal and the vertical direétion and
is, in general, a complex quantity. In the case of
tropospheric waveguides in which the lower boundary is not
perfectly conductive, the mode angle will move away from the
horizontal direction. We will not show this behavior here;
the interested reader is referred to Budden (7, p. 143) in
vhich pizts of moie poinrts on the complex 8-plane for the
case of ionospheric modes are given for different ratios of
conductivity to permittivity. The angles for the first few
modes of a typical tropospheric waveguide are given in Table

2.1. The values are obtained from the expression
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sin3e = 1.5 Kl(m -3/4), m=1, 2, eee (2.2)

vhere K, is the lapse rate (m-!') and m is the mode order.
This is the approximate mode equation for a guide with

perfectly conducting walls.

Prom the numbers given in Table 2.1 or when equation
(2.2) is solved, it can be seen that the lowest-order mode
(m = 1) has the angle of 3.35-milliradians above the
horizontal for the TM case, given a lapse rate of 10-7 per
meter and a wavelength of 1 meter. Since the angle increases
with lapse rate, this value represents a lower limit.

Table 2.1. Elevation angles of the first three modes
in a duct over a perfect conductor. Refractive index

profile is linear.

Mode order Elevation angle
(millirad)
1 3.35
2 5.72

3 6.96
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Equivalent surface., The practical value of waveguide
mode propagation theory can be enhanced considerably if it
can be employed in those instances in which the lowar bounda-
ry between the atmosphere and the earth is rough. OJne ap-
proach which might be used is that described by Senior (14).
His m2thod uses an imperfectly conducting plane surface to
replace a rough contour, the conductivity of the equivalent
surface being a function of the roughness and the electromajy-
netic properties of the original surface. The equivalence is
established by forcing the boundary conditions £or the two
surfaces to be identical. Having defined the electrical pa-
rameters of the equivalent surface, it is them possible to
set up the waveguide-mode problem for the cas2 in which the
lower boundary of a duct is is a plane, imperfect conductor.
The presence of an imperfect conductor necessitates the use
of an impedance boundary comdition (11,15). This condition
expresses a relationship between the tangential components of
the electric and magnetic fields at an interface between a
dielectric medium and an imperfect conductor.

We will not, however, use Senior's method for this
present work; instead, we will introduce a less sophisticated
characterization of the effects of a rough contour. The
method to be used does not depend upon restrictive conditions
with respect to the rough surface being considered; on the

contrary, irrespective of the degree of roughness, if P is
: rs



17

specified, then an equivalent surface can always be found.

As presented below, the technique merely accounts for one
aspect of rough-surface scattering, namely that of the reduc-
tion in the intensity of the field in the specular 3jirection
relative to the mean plane of the rough surface. There are
other processes which are generally involved in rough-surface
scattering, including shadqving, depolarization, and multiple
scattering. All of these would exert some degree of influ-
ence upon the reflected field. Accordingly, it should be
emphasized that the use of the reflection factor F g is ap-
propriate only for the component of the scattered field which
has the same polarization as the incident field which pro-
duced it.

Consider the simplified approximation of a rough contour
by means of an array of flat facets tangent to the original
rough surface. Figure 2.4 shows how a rough contour might be
approximated by short straight-line segments which are local-
ly tangent to the rough contour. For the two-dimensional
case, these lines would be replaced v-th rectangular facets
or some other appropriate two-dimensional shapes. The linear
dimensions and angular orientations of these elementary
reflectors would generally be randomly distributed. In this
representation of the raough contour, we note that there has
to be a trade-off between the accuracy of the approximation

of the contour with the flat facets and the specular charac-
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T~ /.

Pigure 2.4. Approximation of am irreqular contour
using straight-line segments. X scale is compressed.

fi -- local normal

X

Figure 2.5. Local scattering geometry and sketch
of scattering pattern from plane strip.
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ter of the fields scattered from the elementary scatterers.
With this property, reflection from each facet will be essen-
tially specular; wave reflection theory for rectangular

plates with finite area(20) will show that the scattered

field will have a pattern described by the product of

(sinx) /X (2. 3)
where x = masine/A
a = length of a side of the rectangle
€ = angle of incidence
A = wavelength

Figure 2.5 shows how a single facet might reflect an
incident wave. Also shown is the assumed sinx/x pattern of
the reflected field. This shape becomes sharper as the angle
of incidence increases to glancing and the linear dimensions
are increased. Thus to a first order approximation, the far
field will be due to specular contributions from each area,
with those facets lying near the horizontal providing the
major contribution. The implication of the preceding argu-
ment is that the rougii contour scatters with a reduced area,
resulting in a far field which will be att2nuated.

Calculation of equivalent surface constants. Let the

far field in the rough-surface case be E' dus to an incident
field Ei' Corresponding to these gquantities we define an ef-

£ o oo P | - e : X
teCiive refliecticn coefficient RY:
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R = E*/E; (2. 4)

Next we introduce the rough-surface reflection factor Forge

which is defined as

F = R'/R (2.5)
rs

vhere R is the Presnel reflection coefficient of a smooth
surface, BR' that for the rough contour.

The reflection factor Frsis a tensor function of the
roughness and electrical parameters of the surface, the angle
of incidence, and the wavelength. From this point, however,
we will not be concerned with obtaining a mathematical ex-
pression for Frs since this is another whole area of investi-
gatior by itself; Senior's two articles (14,15) could be
useful starting points for such a study. Although Frs is a
tensor, we will employ the simplification that the scattered
field is primarily due to the contributions of areas of the
surface which have their planes oriented closa2 to the
horizontal so that it is reasonable to take F,.g to be a
scalar quantity. 1In the limit, as the rms roughness height
goes to'zero andsor as the correlation length increases, cor-
iesSponding to a smooth surface, P will tend toward unity

rs ~~-°° ~°°°

since then the whole surface will be contributing to the far
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field., In what follows, F will be some number less than or

rs
equal to unity, depemding upon whether the rough surface is
more or less effective in reducing the scattered field. The
Fresnel reflection coefficient of a plane surface illuainated

by a wave incident at the grazing angle @, and having the

constants erand o is

R = (€r - jX)sing -(c_ -~ JX - 0052¢)1/z
(€, = JX)sing +(e, - X - 0052¢)1/2

(2.6)

where X = 60CA.

Now a rough contour, made up of the same material, will

by our postulate, have an ef fective reflectioan coefficient
R'* = -a - jb . (2.7)

where a and b are real and [R'] < 1, and which could be re-
lated to the plane surface reflection coefficient R via the
reflection factor F.g as given in equation (2.6). Using the
expression for the Fresnel reflection coefficiemt, we can
derive an inversion equation for finding the constants of the
equivalent surface. For the sjuivalent surface, we have the
equivalant or effactive reflection coefficient R*

1/2

Yeind — (o' - cosl
R = C'Sing - (c¢' - cos ¢)1/2 (2.9)

a'sind + (a' - cos)
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; - joJwe . This is equation (2.4) written for a

where c¢'* = €
material with the complex dielectric constant c'. By 2
simple algebraic manipulation of the preceding equation, we

can get an expression for the complex dielectric constant cf

in terms of R' and @:

R'(c'sing - (c* - cos’g)l/? =
(2.10)
c'sing - (c' - coszg)l/2

' . ) .
where again c' = €, - jo/uwe .

Rearranginjy to place the terms involving the square root

on one side of the equation, we have
c'sindR' - 1) = -(c". - cosz¢)l/2(R' +1) (2.11)

After squaring and performing additional manipulatioms, we

finally get the second-order equation in the complex dielec-

tric constant c':

a3y 2
(c'sing) “ (R' - l)2 = (c' - cos2¢) (R' + 1)2 (2.12)

This can be solved to yield

. _T & (72 - 4STsin’goos’p) />

c
2Ssin2¢

(2.13)
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n

vhere S (R* - 12

T (R' + 1)2

Of the two possible answers coming out of this expression, we
will pick the one which gives relatively large permittivity
and condugtivity since an impedance coadition in which the
equivalent constants will be used will require that the
refractive index of a material be much greater in magnitude
than unity. The other equivalent constant is nearly equal to
unity. It may be pointed out that for this latter case where
the equivalent constant is nearly that of air, the wave will
penetrate into the lower medium via refraction at a low
grazing angle. In the case of the equivalent constant which
is large in magnitude, the angle of refraction in the lower
medium vill approach 90 degrees and the iou value of the
reflection factor for thislequivalent plane surface will be a
consequence of conduction losses.

Figures 2.6 to 2.8 show how the equivalent surface con-
stants of different materials vary as a function of wave-
length, Frs' and the ahgle of incidence. For all of these
materials, as the surface becomes less effective in
reflecting an incident wave, the equivalent permittivity and

conductivity increase.
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WNAVEGUIDE-MODE ANALYSIS

General. In order to demonstrate the role of surface

roughness -on the properties of tropospheric wavegquides,
through the the artifice of an equivalent complex dielectric
constant with finite conductivity, vwe will examine two simple

profiles: linear and bilinear, as shown in Fijure 3.1 below.

Helght 2z
Height 2z

' N
N N0

(a) Linear (b) Bilinear

Figure 3.1. Simple linearized refractive index profilas.
Mode attenuation and phase velocity as functions of wave-
length, lapse rate, duct height and surface r>ughness con-
stants will be calculated. For comparison, data on ideal

waveguides and linear M-profiles and smooth-earth diffractiosn
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parameters will also be cited. The approach usss a linearly-
segnented representation of actual profiles. By using this
segmentation of the profile, there will he no unwanted
reflections which would otherwise occur at stap

discontinuities in the refractive index.

Basic_method. Consider a 2-dimensional waveguide in
which a vertically polarized plane wave is obliquely
incident. The refractive index profile in the medium inside
the duct is subdivided into layers, inside each of which the
M-profile is a linear function of height z. Since very small
changes of refractive index are involved, in a given layer

having lapse rate Ky the square of refractive index can be

approximated by

n2(z) = 1- 2Kz (3.1)

The field inside the‘guide can be expressed in the product

form
F(x,2) = £(2) exp(-jkCx) (3.2)

where ncos@ = a constant by Sanell's law
vertical height

distance along the direction of propagation

waera numhar
WAL W N e et o -

wd N O
oo
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Note that the sinusoidal time dependence has been suppressed
in equation (3.2). For a specified M-profile, the wave will
be a solution of the second-order differential equatioa (7,

p.181)
d2fsdz2 + k2(nz - C:)f =0 (3.3)

where C, is the eigenvalue corresponding to the m-th mode.

This can be rewritten as
d2frsdz2 + (g(z) +Y)Ef =0 (3.4)

where g(z) = k2n2(z)
Y = -kZC'Z“

In a representative stratun (zjn'zj ) Egq.(3.4) beconmes
d2f/dz2z + [gj(z-zj) + g(zj) +yJ]J£E =0

P - - = 2 . 3
where QJ [g(zj g(zj)]/(zjd zj) 2k &, Kl being the

+

lapse rate in the layer between zyi and zy. By means of the

transformation

o= ROz - 2% (a(z ) +Y) /B, (3.6)
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where Bj and gj are as defined above, and B' =BY3, the dif-
ferential equation (3.4) in turmn becomes the Stokes equa-

tion(13)

d2f/du2 - uf = 0 (3.7)
The general solution of equation (3.7) is (17, p.446)

f(z) = CAi(u) + DAi(u') {3.8)

where u = u exp(-j27/3) and Ai(u) and Ai(u*) are the Airy in-
tegral functions which are entire on the complex u-plane.

The mode equation for a givén profile is set up by usiag
Eq. (3.8) in the impedance boundary condition at the ground
(z = 0) and continuity conditions at interfaces between
layers. The impedance boundary condition is in effect anoth-
er way of expressing the relationship between the incident
and reflected waves at the interface between two media, one
of which is usually air and the other an imperfect conductor
with electrical constants erand 0. For vertical polarization

we have the equation

Adfs732 + of = 0 (3.9)

_____ -
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1/2

where again q = =jk/ (& ~ Jo/we) . This equation can be
derived following a procedure given in (11, p.21). The fol-
lowing are the mode conditions for the linear and bilinear
profiles.

Using a physical arqument, the condition that the solu-
~tions be bounded for very large heights requires that the
second term of equation (3.8) be zero in the case where the
refractive index has a negative gradient with height. Then

the resultant solution for the linear case is
' £(z) = PAi(u) (3. 10)

Consequently, when we substitute this solution into the

boundary condition at z = 0, we obtain the mode equation

-B'Ai(u) + qAi(u) = 0 (3.11)

where g = -jk/(gp - j600A)L/2

l_iili_r;gés.a.r.gé:l.;g-!ité-l§2§g_£ess_ﬁl; For an improved
approximation of an inversion layer as compared with a duct
with a linear profile, examine a bilinear profile as shown in
Pigure 3.1(b). The profile is assumed to have a lapse rate Kl
over the interval (0,21) and above z_ the normal

1
tropospheric gradient Kl is assumed. In the iuct with the
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bilinear profile, there willi be two layers for which solu-
tions to Maxwell's egyuations can be written. AsS in the

linear case, the solution fl(z) must satisfy the impedaance
boundary condition at z = 0. 1In addition, th2 solutions
fl(z) aand fz(z) and their normal derivatives are continuous
across the interface at z = z;. 1In each of these layers we
have the following solutions to Stokes equation:

Layer 1: O<z$zl.

= 3 1 [
f]}z) PlAl(ul) + anl(ul) (3.12)
ni(z) = 1 - 2Klz (3.13)
Layer 2: z2z .
1
fz(z) = Q2Ai(u£) (3. 14)
2 = - -
nz(z) 1 2Klz + 2K2(z zl) (3.15)
Pl' Ql' and Q2 are arbitrary constants and
up= -Bf[z + (1 - C2)/(-2K;) ] (3. 16)
w = Bylz + (L-C - 2K2) /%K, ] (3.17)
Bf = -{2x%xj/3 {3,18)
By = (2k2K2)1/3 | (3.19)
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The complex variable uijdenotes the quantity uidefined for

the i-th layer and evaluated at the height zg . The eigenval-

ue qm can be found by applying an impedance boundary condi-
tion at z = 0 and comntinuity coaditions at z = z,. Thus at

the ground, we have the expression

P)[-BYAL* (u,) + q Rifu,)]+

Q[ -Biexp (-3j2T/3) ai' (u)) + qAi(w)y)] =0

where %o and uio are uy, and uYy ,fespectively, evaluated at

z =),
At z = 23, £3= £, and dfl/dz = de/dz s
BiAi(uyy) + QAi(uy ) = QRiful ) (3.21)

and

=Py BYALY (uyy) - Q) By AL* (u%y)exp(-32T/3)
= -Q Bili.(tll'zl) exp (szw/3:) (3.22)

Equations (3.20) to (3.22) can be solved to give the mode

equation.
D=GU + TV (3.23)
where -G = IZifumj;) ¢ BJAivinl. )Wewn(-i2n/3)
T =

IAi(ull) + YB'Ai (u11 )
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= -Bili‘ (1110) + in(ulo)

g =

V = gAi(ufy) - BYAL' (Wg)exp(-327/3)
I=-BY Ai*(uj;)exp(-32n/3)

Y =

Ai(uil)

Por a more general profile subdivided into J segments,

there will be (J - 1) arbitrary constants Pj ani Qj. There
¥ill also be (2J - 1) conditions: the impedance boundary
condition at the ground aad two continuity conditions at each

of the boundaries between layers.
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NUMER ICAL METHOD

Having arrived at a possible représentation of a rough
surface using the concept of an equivalent surface with
modified complex dielectric constants, we now proceed to de-
scribe the important aspects of the numerical solution of the

waveguide-mode equation of the preceding chapter. The numer-
ical solution consists of three parts: (1) the statemen. of
the mode egquation(s), (2) the development of the necessary
routines for evaluating the Airy integral functions Ai(u) and
Ai* (u) and (3) the development of a root-finding routine for
solving the mode equation.

Airy integqrals, The successful solution of the
wvaveguide-mode problem even for the comparatively simple
profiles considered here depends to a large extent upon the
accuracy and precision'of the Airy intedral function rou-
tires. The Airy integral functions which are the solutions
of the second order differential equation called Stokes equa-
tion can be expressed in the ascending powver series form of

the complex arqument u and u' (18,p.446),

Ai(u) = clf - C,9 (4. 1)

1 + u3/3! + 1"“15/6! + 1'”'7“9/9! + eceoe

]

where £

g a + 2u%/4% ¢ 2.5u?7 /7% + 2+5.8ul0/10Y + .,
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cy= 3-2/3T(2/3)

Cy= 3-1/3T(1/3)

u' = uexp(-j27/3)
By differentiating with respect to the complex argument “ij'
the series expansion for the first derivative of the Airy ian-

tegral function can also be found. Use will also bz made of

the identity
Ai'* (u) = uAi{u) (4.2)

In the foregoing expression, the primes indicate
differentiation with respect to the argument of the Airy
function. The series f and g above can be shown to be con-
vergent over the region of interest in this work. Due to the
limitations of the procedure used for evaluating the Airy in-
tegral functions, the ﬁaveguide mode problems which can be
solved by the present method are those for which the modulus.
of any argument does not exceed 9. The first three modes of
the ideal waveguide problem, for which the lower boundary is
assumed to be a perfect conductor, correspond to zeros of the
Airy integral function and its first derivative which lie
within this regioau. We are primarily interested in the
lowest three or four modes since these are the least

attenuated of the waveguide modes.
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The evaluation of the Airy integral functions can best
be done be rewriting the series in factored or nested form
which permits a high number of significant digits t> be re-
tained following a large number of arithmetic operations as-
sociated with the evaluation of the series. Accordingly we

have for a series of k terms the following expression:

3 3 u;
fF=1+20+2(..+ ))ees) (4.3)
32 6°5 3k (3k~-1) '
L4 3 3 3
g=u@+2 @ +% ..+ y).. (4.4)
34 67 3k (3k+1)

The essential advantage in using the factored form is that
the operations resulting in the smallest numbers are evaluat-

ed first so that for the power series we are concerned with

the sun

1 + ud/p (k) (4.5)

where p(k) = 3k(3k - 1) or 3k(3k + 1)

for which the second term is approximately 10-2, The method
is especially important when the modulus of the complex argu-
ment u is large, such as when {u| is about 9. 1In this case,
f and g are relatively large quantities, of the order of 106

or so, such that after evaluating the Airy iamtegral function,
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the maximum number of digits that can be expected to be
meaningful could be not much more than 6 to 8 so that the use
tion) on the IBM 360 was absolutely justified.

In order to determine the number of terms needed in a
given evaluation of the Airy integral functions, it was
decided to carry out the evaluation of the iniegrals for dif-
ferent numbers of terms in the series expansion. This was
done by varying the phase angle of the complex argument and
evaluating the truncated series until no further improveament
in the sum was seen. The result for arguments with different
magnitudes is given in Table 4.1 and essentially indicate
that the Iggggiggg of the nuamber of terms required corre-

sponds to the modulus of the argument u.

Table 4.1. Number of terms required for power-series
expansion of Airy integral functiomns.

nod (z) Number of terms

12

18
22

32
34
42

WoSNOaNE N
N
™
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Newton-Raphson_method. For a root-finding techniqae, it
was decided to use the Newton-Raphson procedure since it can
work equaily well with expressions involving complex as well
as real arquments. The method is defined for the complex

equation
F(u) = g(u) + jh(u) (4.6)

wvhere F{u) is an analytic function of the complex variable u

= x + jy and g(u) and h(u) are real for all u. The Newton-

Raphson method is defined

W, = u - F(u)/FU(g) (4.7)

where o, is an estimate of the desired solution Y- When

F(u)) = 0 when F'(un) = 0, then

n n+l (4.8)

For starting solutions u, the real zeros of the Airy integral
function or its first derivative are used Tha mode equatioas
are not directliy expressed as functions of tha desired eigen-
value; instead, they are solved for in terms of the argument

of the Airy integral function v

After finling u 0 it is

10°
a simple procedure to calculate the eigenvalue

1
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qm = ncos¢]m =1+ 2u10K1/B') (4.9)

The mode equation is expressible in terms of the argument u
since all the other arguments can be expressed in terms of
it. The flov chart for the Newton-Raphson root-finding rou-
tiue is shown in Pigure 4.1. Briefly, it has the expressions
for the mode equation D and its first derivative with respect
to the argument u and subroutines for evaluating the Airy
functions Ai(u) and Ai'(u). A routine for assigning the num-
ber of terms to a series expansion for an Airy function de-

pending upon the modulus of the argument u is also includ-

ed. The input data are
21 duct depth, W
RL1 lapse rate K
A trial salution of mode equation
RL relative permittivity
RX . X = 600A

DERR error limit
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/ READ IN
Cr,d"-’ €

A

EVALUATE
VARIABLE $ 2e—2
Us;
SUBROUTINE
2SI2E — ’
ASSIGNS NO.OF
TERMS 1N SERIGS
SUBEOUTINES M A Ean. NBU BSTIMATE
Al ,A4T2 > F'Cuc‘.j) OF sowu Tion/
PR MY 2 ¢z -F/p!
INT. FCNS
>
PRINT ,
=
2,F s
>
STOP =T e,
(o o F(uﬁ):
F' (w3
Pigura 4.1. " Plow chart for Newton-Baphson routine for
solving wavequide msde eguaticn.
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NUMERICAL RESULTS

Calculations were made for the two simpl2 profiles de-

scribed in chapter 3. For a reference against which the
properties of the modes in ducts over rough surfaces can be
measured, the ideal case in which thé earth is assumed to be
a perfect conductor was investigated. For the case of a duct
having a linear refractive index profile, the mode properties
are given in the literature., It was primarily to test the
correctness of the equations used in the ahalysis that the
ideal cases were studied. The data can be divided into those
applicable to ducts having smooth lower walls and those for
ducts underlain by réugh contours. The former category by
themselves constitute an important group of problems since
previous treatments of surface-based ducts employed the
severe simélification that the ground or water surface can be
represented by a perfect conductor. The second set of
results dealing with the solution of the waveguide-mode prob-
lem for roughened contours represent a new method of account-
ing for roughness effects. In a duct with a bilinear
profile, attenuation rates of the various modas can be
readily obtained by simply using q = 0. PFor vertical polari-
zation, this is equivalent to the mode equation dfsdz = 0.
Figure 5.1 showé how the lapse rate in a duct with a

linear profile of refractive index affects the rate of attean-



43

vation of waveguide modes. The curve shown for each material
applies to the next two modes (at least), since the numerical
results at corresponding lapse rates were close in value to
each other. Next, figures 5.2 and 5.3 show how attsnuation
is changed when the lower boundary of the duct becomes rough.
The data showx are for reflection factors (g ) of .1, .2,
«3, .6, and 1.0 with lapse rate (Kl) of 10-7 per meter and a
wavelength of 1 meter. Note that to find these attanuation
rates the equivalent surface constants are different for the
three modes and can be taken from figure 2.4 or 2.5. The
next two figures, 5.@ and.S.S, show how the attenuation rate
varies wvith lapse rate for smooth sea and moist soil, respec-
tively. The lapse rates used were 10-8, 5x10-8, and 10-7 per
meter. The independent variable for the fiqures is duct
depth §. Figure 5.6 indicates the manner in which surface
roughness modifies the attenuvation curves givan in fiqure 5.4
for sea water. The next two figures, 5.7 and 5.8, show how
the attenuation rate varies with duct depth W. Three curves
are shown for the first three modes in the bilinear duct.

The effects of roughness in wave propagation inside a
bilinear duct is indicat;d in figures 5.9 and 5.10 for sea
water and moist soil at Frs = 0.,3. Finally, the last two
figures (figures 5.11 and 5.12) portray the effect 2f varying
the wavelength for a given bilinear duct. Three duct depths

z = 100,150, and 200 meters are used as parama2tars. Due to
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the limitation in computation time, a more representative
collection of results is not possible; howevar, the present
data should serve to demonstrate the importance of surface
roughness and finite conductivity on radiowave propagation
along the earth's surface by the ducting procass.
From the definition of the variable u,

up = =Bf[z + (1 - G2)/(-2K)) ] (5. 1)

ve can determime the eigenvalue Cm once the zero of the mode

equation has been found. The attenuation rate a of each

mode is calculated using the expression
a = -kIm(Cm) x 8686 dB/gm (5.2)

vhere again k is the wave number at z= 0, sz ncosqn.

The effective phase velocity of the slectromagnetic wave
inside the duct is reduced somewhat, as it turned out, by
about a few parts in 103 or 104 at the most. Accoriingly,
only the attenuation rates of the modes are presented as
these depend upon the tropospheric conditions, polarization,
vavelength, surface material and surface roughness.

In starting the numerical solution of th2 mode equations
for the linear and bilinear cases, the real zeros of the Airy

integral functions Ai(u) and Ai® (u) were appropriate since
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the zeros are the solutions for the ideal duct whose lower
boundary is a perfect conductor. The choice of starting
points for the initial estimate of the solution of the mode
equation for the practical situation in which the earth is
not perfectly conductive turns out to be dependent upon the
relative magnitude of the terms in the mode equation. Con-

sider the mode equation for the duct with a linear profile:

dfsdz + qf = 0 at z = 0 (5.3)

In terms of the Airy integral function, we have the equiva-

lent expression
(-B')dfsdu + gf = 0 (5. 4)

where typically B* is of the order of 102 or less so that
the first term is about two orders of magnitude smaller than
the term in f. Consequently, whean g is large, the desired
solution of the mode equation is essentially determined by
the zero of Ai(u); otherwiée, Ait* (u) determines the solution.
For the cases examined in the numerical calculations, there
are examples of both types of solutionms.

Some of the approximations made in finding the waveguiie
modes of the radio duct will next be given. Recall that the

factor ¢ in the mode equation of the linear profile case is a
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function of the surtace impedance of the ground. In all the
cases involving smooth surfaces, solutions were soujght undec
the assumption that surface impedance presented by the ground
to an incident wave is to a good approximation the same as
its characteristic impedance. A more accurate representation
of the ground's surface impedance uses the following modifi-

cation:

z2 =n[1- (@sinze)/y?]

where n = characteristic impedance of the ground

o= - e’

2= Juug - que’
It turns out however that the dependence upon the angle of
incidence is a second-order effect since the cosine of a
small angle, approximately .01 radian, is involved. This is
especially true when the ratio YO/V; is small, such as for
sea water. #For the case of dry soil, which has a relative
permittivity of 4 and a conductivity of 10-3 mhos per meter,
the correction would have to be made if a high degree of ac-
curacy is desired. On the other hand, in the case of rough
surfaces represented by means of smooth surfaces with equiva-
lent dielectric constants determined by the scattering geome-
try and the electrical properties of the original rough

surface, this approximation will not be acceptable. This is
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due to the rather sensitive dependence of the surface con-
stants to small changes in the value of the angle of imci-
dence. However, as a first approximation, it is permissible
to take the angles associated with the first, second and
third modes of the smooth surface problem, usa2 them to caicu-
late the equivalent surface constants and solve the mode
problem for the three modes in the rough-surface case. For a
given mode, the surface constants are kept fixed as the duct
width is varied. The numerical calculations which were
performed indicate, however, that the angle of incidence of
the mode varies with duct width so that it would be desirable
to iterate.the procedure so that the characteristic angyle of
elevation of a mode agrees with that used in calculating the
equivalent constants of the rough surface. The effect of
using surface constants which are not exact for the mode is
not severe, however, as the actual attenuation rate differs
from the approximate value by a few perceant. For example, at
Fg = 0.3 and K3 = 10-7 per meter, we can see in figures 5.2
and 5.3 that attenuation rates for sea water and moist soil
differ by approximately 11 percent. The following table
shows how the characteristic angles of the first three modes
in a duct having a linear refractive index profile change
with mode order m. Information about the elevation angles >f
the various modes in a duct with infinite conductivity is

valuable in solving the probler involving an imp=zrfect
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conductor for the lower wall of the guide.

Table 5.1. Elevation angles of duct modes.

Elevation angle (millirad)

Mode order

Sea water Moist soil
1 4.8 4.8
2 6.“ 6.“
3 7.4 T.4

This and knowledge of the real zeros of the airy funct-
ions indicate the folloﬁing procedure for finding ths modes:
Starting at a height which is adequate for supporting the
desired mth mode, and using as the first trial zero ths m-th
zero of the appropriate Airy function, solve the mode equa-
tion using a Newton-Raphson procedure as described earlier.
The duct depth will be incremented and the previous eigenval-
ue used as the first estimate of the solution (eigenvalue).
By judiciously selecting the increment in duct depth, it is
then possible to take advantage of the computational resuit

that the eigenvalues lie along a line imn the third quadrant
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vhich tends to move away from the real axis as the duct depth
is decreased toward zero. This procedure tenis to reduce
computation time as the eigenvalues can be reached in a few

iterations of the Newton-Raphson routine.
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DISCUSSION

The results presented ir the preceding chapter are
admittedly based upon a limited number of examples, a conse-
quence of the rather appreciable amount of computing time ex-
cended in developing the routines for evaluating the Airy in-
tegral function with complex argument. The choice of the
range of lapse ratés considered in the bilinear problem was
dictated by the routine for evaluating the Airy integral
function. If was decided at the time the data runs were maide
that the Airy integral function will be evaluated only when
the argument has a modulué of about 9 units or less, which
would call for a truncated power series expansion involving
at the most forty-two terms in the third power of the complax
argument u. This restriction on the modulus of the argument
of the Airy integral function comes about because of the

occurrence of arguments-of the type

Uy T Yo T B'Zy (6-1)

for the bilinear problenm.

It can be readily seen that for a lapse rate of10-% per meter

and a duct height z_ = 100 meters, the product -gle can

1
range in magnitude from 1 to 10.



The procedure used in evaluating the power series expan-
sion of the Airy integral function does not in all likelihoodd
represent the optimum technique. There could be other non-
standard methods for evaluating power series with complex ar-

guments such that the precision inherent in the use of double

examination for their possible application in problems of the
type considered in this thesis. The results iescribed below
vere obtained with the Airy ianteqgral function evaluation done

in double precision arithmetic and with the series =2xpansion

Linear_ profile_over_smooth_surfaces. 1In looking at the

graphs of the attenuation rates of the first mode in a duct
with a linear profile of refractive index for smooth surfaces
we discern the following patterns: (1) attenuation rate a
increases with lapse rate over the range of values consid-
ered; (2) attenuation rate increases with th2 modulus of the
complex dielectric constant Sf - jo/we,; and (3) the graphs
of the rate of attenuation for the modes are approximately
the same for a given surface. Since the first twvo observa-
tions are applicable also to the bilinear case, their discus-
sion will be deferred until after the results for the

bilinear analysis have been examinad. It is apparent that
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when modes are wholly locked, in the sense that there is suf-
ficient duct depth for supporting them, the att2nuation rates
are remarkably similar for the threse modes considarsd. Upon
examination, it turns out that this is a consequence of the
approximation that the surface impedance of thz ground does
not change with the angle of incidence. As discussed
earlier, this approximation works rather well when the
modulus of the complex dielectric constant is appreciably
greater than unity. The effect is of secondary importance
since broad flat natural surfaces are seldoﬁ ancounterad
under most propagation conditions. It is to be noted that
the eigenvalues of the mode equation lie near the zeros of

the first derivative of the Airy integral function Ai'(u).

Bilinear profile_of refractive_index., N2xt we look at

the manner in which the attenuation rate of the first mode

varies with lapse rate uithin the.duct for tha2 bilinear cas=.
The next two sets of graphs depicts the manner in which at-
tenuation rate changes with lapse rate for a given duct
height. Here the results are consistent with those for the
linear case in those cases in which the duct is sufficiently
deep to support the modes. Thus it can be sea2n that the
least attenuated first mode is that in the duct with the
lowest lapse rate; The trend shown by th2 thre2 curves for

the first mode over smooth sea water at three different lapse
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rates is that when the duct depth is sufficient, ths lowest
attenuation occulri when the lapse rate is least. Anotaer in-

teresting feature of this set of curves is that complete
guiding does not occur at the same value of the refractive
index contrast An = Klzl , as indicated by the "knee" of the
a vs. W curves. Instead, the apparent trend is that at
higher lapse rates the contrast Am is greater than that at
low values of Kjz;. By comparison, the work of Wait and
Spies (11) and also that 5f Chang (18} show that for elevated
ducts egual attenuation occurs for equal contrast An. Note
that a comparison between elevated and surface ducts is dif-
ficult to make in view of the different mechanisms causing
mode attenuation. In the case of surface ducts, both ground
dissipation and leakage through the top of the duct bring
about energy loss, whereas for eievated ducts energy is lost
only through leakage to regions above and below the duct.

At the other extreme, when quasi-propagating modes are
indicated since the radio duct is not deep enough, the oppo-
site behavior is observable, namely that attenuation de-
creases as lapse rate increases. Note that the duct depth
has to be greater when the lapse rate is less; this is con-
sistent with the requirement that a wave has to take a longer
distance over which it can be refracted if the lapse rate is
low. PFor ducts waich do not have sufficient depth, the three

nodes experience differing degrees of attenuation, with the
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lovest modes being attenuated least. Not2 als> that at the
limit when the duct depth is zero, the attenuation rate of
the "modes"™ are those for smooth-earth diffraction. A possi-

ble explanation of this phenomenon is that wh2n the lapse

nodes to be suﬁported. For a given amount 9f energy to be
conveyed along iha surfaced-based guide, the 2nergy density
within the duct varies invetsely with duct depth. Thus it
seems reasonable that the electrical field at the air-grouni
interface must be lower and consequently the attendant con-
duction loss in the surface material is lass than wouli be
case if the duct were shallowver.

The foregoing discussion might be compared with the ths-
oretical prediction for the rate of attenuatiosn in a
rectangular waveguide. 1In Brown et_al. (21, p.262), for ex-
ample, we will find that the rate of attenuation for a fiell
in the TE mode iaside a rectangular guide is jinversely pro-
portional to the crossquide dimensions.

The modes in ducts having the same refractive index
profile may be compared when the lower boundariss have dif-
ferent electrical properties. The trend that can be observai
is that the surface having lower conductivity supports modes

which are attenuated less than those in a duct over a

relatively better conductor. This agr22s with the results
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obtained for the linear-profile ducts.

Finally, Pigures 5.11 and 5.12 show how the attenuation
rate of the first mode in a duct with a given refractive
index profile varies with the wavelength of the field inside
the duct. The data for three duct heights show the common
trend that the rate of attenuation per unit distances in the
direction of propagation varies directly with wavelength: the
lcnger the wavelength, the higher the attenuation, the longsr
vavelengths seemingly exhibiting a greater tendency to leak
through the upper region of the duct. The curves for sea and
fresh water track rather well, especially at short wave-
lengths. This trend can be ascribed to the manner in which

the factor

g = -3k/ (€ = jo/ue, \*

varies with wavelength.
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CONCLUSIONS

This work was intended to incorporate the effects of
surface roughness and the finite conductivity of tha ground
in the formulation of the waveguide-mode propagation problen
for surface-based tropospheric ducts. The concept of a

scalar rough-surface reflection factor P based upon the

rs’
principal effect of surface roughness, namely diffuse scat-
tering and the attendant reduction of the obsarved field, was
introduced. By this procedure, a rough contour can be re-
placed with an e2quivalent imperfectly conducting-plane, the
electromagnetic properties of which are determined by those
of the assumed homogeneous rough surface ard the factor %s'

Calculations based on typical surface duct parameters
showed some rather significant results. First, in cortrast
with previous assumptions, modes over relatively "™good"
conducting surfaces are attenuated more, not less, than those
over "poorly" conducting surfaces. Second, sarface roughness
causes an important change in mode attenuation: the rougher a
surface is, the higher the attenuation of a mode. Also, for
sufficiently rough surfaces, such as those with Frs of ap-
proximately 0.3 or less, the difference between the attenua-
tion curves for different materials is relatively small.

The results described earlier suggest some areas for

possible investigation. One of these has to do with the
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mechanism for long-range radio propagation via radio ducts.
Since the results show in part that a good comductor such as
‘the sea causes a higher rate of attenuation in a wave
propagating over it, long-range propagation under inversion
conditions must be accounted for by some mechanism other than
that involving the sea or ground as a boundary of the duct.
Information concerning the manner in which the mode proper-
ties are affected by the surface reflection factor, and more
realistic, and often more complicated, profilas of refractive
index should be examined. One interesting case wouald be to
study the =S duct (elevated layer, surface duct) in order
that we might determine whether long-distance propagation is
best supported in an elevated layer or within a surface-based
duct. It should be stressed that the ES duct referred to
here is different from the elevated ducts studied by Wait and
Spies {(12) and Chang(13) (see fiqure 1.2).

In any proposed application of the linear-segmanted
profile method for radio ducts, a serious disadvantage is
present in the power-series expansion of the Airy integral
function. Other technigues for solving the mode equation
should be studied so that the full potential of the megthod
used in the present work can be realized. Analog computation
techniques should be examined and, if found to yield results
faster and relatively inexpensively, the method could be con-

sidered for such applications as remote-sensing of the
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troposphere, propagation path prediction, etc. Accordingly,
the next step to take is to find more powerful meaas for
solving the wavegunide-mode problem, especially for cases
where the refractive index profile has to be more accurately
represented by many linear segments. Hopefully, we might see
some potential coantributions being made in th2 areas of
radiovave propagation mechanisms in the troposphere and in

remnote sensing in the atmosphere.

——



1.

2.

3.

S.

7.

8.

9.

10.

11,

12.

71

BIBLIOGRAPHY

Watson, G. N. "The diffraction of electric waves by the
earth." Proc. Roy._Soc. A 95, No. A666 (October, 1918):
83-99.

Watson, G. N. "The transmission of electric waves round
the earth.® Proc. Roy._Soc. A 95,No. A4673(July, 1919):
546-563.

Kerr, D. E. Propagation of short radio waves. New York:
McGraw-Hill, 1951.

Booker, He G.; and W. Walkinshaw. "The mode theory of

tropospheric refraction and its relation to wave-guides
and diffraction.™ Report: Meteorological Factors_inm_aadio

" i G > S W . G - S S S —-—— S S e L G G - - -

Wave_ Fropagation. London: Physical Society, 1948.

Eckersley, T. L. "Radio transmission problems treated by
phase integral methods." Proc._ Boy. _Soc. A, A 133(June,
1932) = 499-527.

Eckersley, T. L.; and G. Millington. "Applicatior of the
phase integral method to the analysis of the diffraction
and refraction of wireless waves round the earth.™ Phil,
Trans. _Roy. Soc. A 237(June,1938): 273-309.

Budden, K. G. The Waveguide-Mode Theory of Wave

Propagation. Englewosod Cliffs, N.J.: Prentice-Hall,
1960.

Pekeris, C. L. M"Accuracy of the earth-flattening approx-
imation in the theory of microwave propagation." Phys.
Bev. 70, No. 7(October 15,1946): 518-522.

Bean, B. R.; and E. J. Dutton. Radio Meteorology. Wash-

ington' D.C.: U.s. Natl. Burc Stand., 1966.

du Castel, F. Tropospheric Radiowave Propagation Beyond
the Horizon, Oxford: Pergamon, 1966.

Wait, J. B. [Electromagnetic_Waves_in_Stratified Media.

New York: Pergamon, 1370.

Wait, J. R.; and K. Spies. "Internal guiding of
microwaves by an eievated tropospheric layer."™ Rad._Sci.
n, No_ ufinril. 1969): 319-326.



13.

14.

15.

16.

17.

18.

19.

20.

21.

12

Changy, H.-C. "The effects of tropospheric layer struc-
tures on long-range VHF radio propagation."”IEEE_Irans

Anteppas_Propay. AP-19, No. 6 (November, 1971): 751-756.

T. B. A. Senior. “Impedance boundary conditions for
imperfectly conducting surfaces."” Appl._ Sci._ Res. Sec.
B, 8(1960): 418-436.

T. B. A. Senior. "Impedance boundary conditioms for
statistically rough surfaces." Appl. Sci._Res. Sec. By
8{(1960): 437-462.

Gerks, I.; and R. M. Anderson. "Diffraction of radio
waves in a stratified troposphere.™ Rad. Sci. 1, No.
8(August, 1960) : 897-912. '

Miller, J. C. P. The_Airy Integral. - Cambridge: Univer-
sity Press, 1946.

Abramowitz, M4.; and I. Stegun(Eds.). Handbook of Mathe-
matical_ Functicns. Washington, D. C.: U. S. Natl. Bur.

Stand., 1964.

€
Mathematics. Vol. 1. Reading, Mass.: Addison-Wesl

Young, D. M.; and B. T. Gregory. A_survey of Numerical
1972. ’

Silver, S.(Ed.). Microwave_Antenna Theory and_Desian.

New York: Dover, 1965.

Brown, R. G.; R. A. Sharpe;'w. L. Hughes; and R. E. Post.
Lines, Waves,_ and Antennas. New York: Ronmald, 1973.



73

ACKNOWLEDGEMENT

The author wishes to express his appreciation for the
valuable help that his major professor, Dr. Robert E. P?st,
gave throughout the comduct of this work, from the ideas
vhich led to the selection of the subject to the suggestions,
questions, comments and criticisms while the author struggled
with the problem. The financial support received by the
author from the University of the Philippines and Educational
Projects, Inc. while he was at Iowa State University is
hereby gratefully acknowledged. The encouragement and sup-
port of friends at Iow; éiate is also acknowledged.

This work is dedicated to my long-suffering wife,

Athena, and our daughter Vivienne.



74

APPENDIX: COMPUTER PROGRAM LISTING

C*xxx*PROGRAM TO FIND THE MODES IN A DUCT WITH A BILINEAX
C***xxPROFILE OF REFRACTIVE INDEX.
C*****THE FOLLOWING NOTATION IS USED IN THE PROGRAMN:

Z STARTING VALUE OF THE SOLUTION

z1 DUCT WIDTH IN METERS

RE RELATIVE PERMITTIVITY

BRI X = 60 X CONDUCTIVITY X WAVELENGTH

WL WAVELENGTH

yAY, GROUND CONSTANT

CcH MODE LQUATION

FM PIRST DERIVATIVE OF THE MODE EQUATION

ZANG MODE ANGLE
ZTHETA SOLUTION OF THE MODE EQUATION

AS GIVEN HERE, THE PROGRAM CALCULATES THE COMPLEX MGDE
ANGLE "ZTHETA™ FOR A SPECIiFIED RANGE Gf VALUES OF

DUCT HEIGHTS "zZ1i". THE RANGE IS FRONM

7Z1" IO "RLIM"™ AT STEPS OF “RDEL".

TO USE THIS PROGRAM FOR A LINEAR PROFILE OF REFRACIIVE
INDEX, THE PROGRAM IS SLIGHTLY MODIFIED SINCE THE HODE
EJQUATION FOR THIS CASE IS SIMPLER.

THE POLLOWING STEPS REPLACE THOSE STARTING WITH THE
U1 = Z STATEMENT UP TO Z = Z - CM/FN

e N e NNz Nz Ne X XK Na K Ne Nz Ne NeNe K ReKe N K2 Ke!

ChkkkkkkkkkhkkkkEkkk kK *#**** F 3k Ak ok A Ak A2 e A 3k ok 3k A 3k 3ok o 3k ko 3 3k oK X K Kok
C ok e 3k ok ok e dok ok ok ook ok ok Ak ok ok Rk ok K 3ok ok 3 ok o koK e ok ok ok ko ook dk ek ok ok k&
CALL AI1(Z,AI,IZ)
CALL AI2(Z,aA,IZ)
CH = -B1*AA + ZQ*AI
IP (CDABS (CH) .LE.DERR) GO TO 666
C OTHERWISE, FIND NEW ESTIMATE USING NEWTON'S METHOD
FM = ~B1%Z¥AI + ZG*AA
IF (CDABS {FM) LE.DERR) GO TG 555
C IF NOT, CALCULATE NEW Z
Z = 2 - CM/FH
ot 2123222222 22 222 222 3] Ak dk Ak ok ok Ak ok gk ok ok e koK o K ok KK ok Xk ok ok K ook ok sk Xk ok ok
Ok ok Sokdokok Rk kKoK Aok A Aok ko dok ok Aok ok ok ok ok R Kk ok ok Rk kR ok K kK
c
C MAIN PROGRAM  MAIN PROGRAM
C
IMPLICIT COMPLEX*16 (A-C,F,U-Z),REAL*8 (D, R)
CORPEX*16 DCHPLY,DCONIC
REAL*8 RL(5)
COMPLEX*16 ZIN (5)
REAL*8 CDABS
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REAL*8 B1,B2,BX,CI
REAL*Y4 CMR,CMI,DA,DB,DC,ABS
ERR = 1.E-4
DATA 2ZJ/ (0.DO, 1.D0)/
READ,RE,RX ,RLMDA ,RL1,RL2
READ,Z1,2Z
WRITE (6, 13)

13 FORMAT(*1')
25=2 '
DPI = .314159265358979 3D1
DEER = 1.D-6

BL2 = 1.25E-7
DP2 = DPI*DPI
DK2 = .40D1*DP2/RLHDA**2

ZREAL = (1.00,0.0D0}
CI = DSQAT (3.D0)/2.D0
20 = DCHPLX(-.5D0,-CI)

cJ = (0.,1.)
E=10
S=.01
WL= 1.
C gh&C?LATEVALUES OF 010,011,021 AT LEVELS 2=/ AND Z = 21
J =1
Z2Q = (-ZJ*.20D 1*DPI/RLMDA) /CDSQRT (DCHPLX (RE,-RX))
D3 = 1.D0/3.D0
B1 = - ((DK2¥2.D0*RL1)**D3)
B2 =  (DK2%*2.DO*RL2) **D3
BE = -B2*RL1/(B1*aL2)
cMt = 0.

7 CALL ZS1ZE(2,1%Z)

IF (1.GT.20) GO TO 666
Clekdok ko ok ke ok &k ok ok Rk kR k& k¥ seok 3 a3k ok ok e ok ke ik ok ek Rk ok ok ok kR Rk ok Kk koKX
C Ak 2k ok ok ok ok o ok ok kR K ok ok ok k koK A3 3 ok 2k %ok %k ok oo deof 3ok ek ok ok ok kK ok kk

Cc START OF THE CALLING ROUTINE FOR BILINEAR PROFILE PROBLEHN

U1=2

us = U1

V1=U1*20

g2 = U1 - B1*Z1

V2 = D2%Z0

V3 = ZU¥*( U1*BK + B2*RL1*Z21/RL2)

CALL AI2(V1,BP10,IZ)
CALL AI1(U2,A11,1Z)
CALL AI2(U2,AP11,12)
CALL AI1(V3,B21,IZ)
CALL AI1(V2,B11,I3)
CALL AI2(V3,BP21,I2)
CALL &IZ{vZ,BF11,1II)
CALL AI2(U1,aP10,I2Z)
CALL AI1(U1,A10,I2)
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CALL AI1(V1,B10,I2)
C***«*FORM THE MODE EQUATION CM*%*

c
CX = -B2*ZU*BP21
cY = B21
C¥ = B11*CX + B1*ZU*BP 11*CY
CT = AV1*CX + B1*AP11%CY
CP = -B1¥AP10+2Q*A10
CR = -B1%¥ZU*BP10 + Z0*B10
CM (MM,KK) = —-(CH*CB/CT) + CR

PRINT,I,U1,CH
IF (CDABS (CM) .LE.DERBR) GO TO 666
C*+*%+%) NEW ESTIMATE OF THE POINT "U1)

CXP = ZU*ZU* (-B2)*B21*V3

CYP = BP21*ZU*BK

CWP = BP11%ZU%CX + B11*CXP

1 + BI1*LU* (B114#V2%Z0%CY + BP11%¥CYDP)

CTP = AP11#CX + A11%CXP + B1¥ (U2*%A11%CY + AP11*CYP)
CPP = -B1*U1%A10 + ZQ*AP10

CRP = (-B1¥ZU*V1*B10 + ZQ*BP10) *ZU

FA = (~(CT*CWP - CW*CTP)*CP/(CT*CT)) - (CW/CT)*CPP + CRP
PRINT,I,FH

PRINT,CWP,CPP,CTP,CRP

DF M=CDABS (FM)

IF (DFM.LE.DERR) GO TO 555
C Ak o dokok Xk i Aok ok ok ok ok Aok ok ek ok Aok ok 3 o ook 3 2ok ok o Xk ok ok o ok ok ok ok ok ook ook ke

C***************************t*********#*********************.
C THLS ENDS THE SECTION OF THE PROGRAM FOR USE IN SOLVING
C THE MODE PROBLEM FOR THE DUCT WITH BILINEAR PROFILE

Z =2 - CN/FN

BEALZ = ZREAL*Z

IF (REALZ.GT.1.0D0) GO TG 333

I=1I+1
GO TO 7

333 2 = ZS~.5D0
s = 2
I=I+1
GO TO 7

555 Z=2-.1D0
I=I+1
GO TO 7

666 PRINT,I,Z,CH (MM, KK)
PRINT,LZ,IX,Z1,BX
C FIND THE NODE ANGLE
2C2 = 1.0D0 - Z*2,0D0*BL1/B1
ZTHETA = CDSQRT (ZC2)
PRINT,ZC2, ZTHETA
CALCULATE THE COMDLEY MODE ANGLE

ZANG = -2J*CDLOG (ZTHETA + CDSQRT (ZC2-1.0D0))
C*x*%x CHECK IF THE COMPUTED VALUE OF ZANG 1S CORRECT

(@]
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aO0On

17

ZTH = CDCOS{ZANG)
WRITE (6,17) ZANG,ZTH
17 FORMAT{(' ' ,'ZANG = *,5X,D28.16,5X,D28.16,
21(COS (2TH) = ', 5X,D28.16,5K,D28.16)
WRITE (6,31)
31 FORMAT('0',/////)
777 CONTINUE
STOP
END

SUBROUTINE AI1 (Z,ZAI,K)
IMPLICIT COMPLEX*16(Z)
COMPLEX*16 F (59),6(50), DCMPLX
REAL*8 DSQRT,CA,CB

/4

DATA CA,CB/.355028053887817, .258819403792807/

ZU=DCMPLX (-. 5D0, -DSQRT (3.D0) /2.D0)
73=2%%3 |
L=3%K

F(K) =1.D0 +Z3/{L*(L-1))

G(K) = 1.D0 + 23/(L* (L-1))
M=K-1

DO 90 I=1,HM

J= K-I

N=3%J

F(J) = 1.DO+F (J+1)*(Z23/(N* (N=1)))
G(J) = 1.D0#G(J+1)*(Z3/(N* (N+1)))
IF(J.GT.1) GO TO 90
IF (J.EQ.1) GO TO 20
GO TO 90
20 ZAI=CA*F (1)~CB*G (1) *Z
90 CONTINUE
99 CONTINUE
RETURN
END

SUBROUTINE AI2 (Z,ZAA,K)
IMPLICIT COMPLEX*16(2)
COMPLEX#*16 F (50) ,G(50), DCMPLX
REAL*8 DSQRT,CA,CB

II=1

DATA CA,CB/. 355028053887817, .253819403792807/

Z3=Z%*3

L=3*K
FiRj=1.D0+23/{{L-3%{L-3))
G(K) =1.D0+23/(L* (L-2))
M=K-2
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20

90
99

41
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43
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DO 90 I=1,M

J=K~1I

N=3%J

F(J)= 1.D0 + F (J+1)*(Z3/((N-1) *(N-3)))
G(J) = 1.D0 + G(J+1)*(2Z3/ (N*(N~2)))
IF (J.EQ.2) GO TO 20

GO TO 90

F(1) = F(2)*(2*Z /2.D0 )

G(1) 1.D0 + G (2)* (Z3/3.D0)

ZAA = CA*F (1) - CB*G (1)

CONTINUE

CONTINUE

BETURN

END

SUBROUTINE ZSIZE (Z,IZ)
COMPLEX*16 2

REAL*8 RZ,CDABS

RZ = CDABS (2)

IF (RZ.LE.2.0D0) GO TO 41
IF (RZ.LE.4.0D0) GO TO 42
IF (RZ.LE.5.0D0) GO TO 43
IF(RZ.LE.6.0D0) GO TO 44
IF (R2.LE.7.0D0) GO TO 45
IF(RZ.LE.8.0D0) GO TO 46
IF (RZ.LE.9.0D0) GO IO 47
I2=12

GO TO 7

1zZ=18

GO TO 7

12=22

GO TO 7
12=26
GO TO 7
12=30
GO TO 7
12=34
GO TO 7
1Z=42
RETURN
END
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